www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperPermutationen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Permutationen
Permutationen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Permutationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:46 So 06.11.2011
Autor: Klempner

Aufgabe
(a) Berechnen Sie (1 2 3) [mm] \circ [/mm] (2 4) und (2 4) [mm] \circ [/mm] (1 2 3).

(b) Stellen Sie die Permutationen aus Aufgabe G3(1) als Produkt (Komposition) von Zyklen dar.
Permutationen:
[mm] \pi=\pmat{ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 7 & 6 & 8 & 1 & 3 & 2 & 4 } [/mm]
und
[mm] \delta [/mm] = [mm] \pmat{ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 6 & 1 & 2 & 3 & 4 & 7 & 8 } [/mm]

Ich habe folgendes gerechnet und würde eigentlich nur wissen wollen, ob das richtig ist, da ich mit der Formulierung Schwierigkeiten hatte:

zu (a):
[mm] \pmat{ 1 & 2 & 3 \\ 1 & 2 & 3 }\circ \pmat{ 1 & 2 \\ 2 & 4 }= \vektor{1 \\ 2} [/mm]
und
[mm] \pmat{ 1 & 2 \\ 2 & 4 } \circ \pmat{ 1 & 2 & 3 \\ 1 & 2 & 3 } [/mm] = [mm] \pmat{ 1 & 2 \\ 2 & 4 } [/mm]

Stimmt das, oder habe ich das falsch verstanden, bzw. gerechnet?

zu (b):
ist meine Lösung:

[mm] \pi [/mm] = (1 [mm] 5)\circ [/mm] (2 7) [mm] \circ [/mm] (3 6) [mm] \circ [/mm] (4 8)
[mm] \delta [/mm] = (1 5 [mm] 3)\circ [/mm] (2 6 [mm] 4)\circ (7)\circ(8) [/mm]

        
Bezug
Permutationen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:10 So 06.11.2011
Autor: Lippel


> (a) Berechnen Sie (1 2 3) [mm]\circ[/mm] (2 4) und (2 4) [mm]\circ[/mm] (1 2
> 3).
>  
> (b) Stellen Sie die Permutationen aus Aufgabe G3(1) als
> Produkt (Komposition) von Zyklen dar.
>  Permutationen:
>  [mm]\pi=\pmat{ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 7 & 6 & 8 & 1 & 3 & 2 & 4 }[/mm]
>  
> und
>  [mm]\delta[/mm] = [mm]\pmat{ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 6 & 1 & 2 & 3 & 4 & 7 & 8 }[/mm]
>  
> Ich habe folgendes gerechnet und würde eigentlich nur
> wissen wollen, ob das richtig ist, da ich mit der
> Formulierung Schwierigkeiten hatte:
>  
> zu (a):
>  [mm]\pmat{ 1 & 2 & 3 \\ 1 & 2 & 3 }\circ \pmat{ 1 & 2 \\ 2 & 4 }= \vektor{1 \\ 2}[/mm]
>  
> und
>  [mm]\pmat{ 1 & 2 \\ 2 & 4 } \circ \pmat{ 1 & 2 & 3 \\ 1 & 2 & 3 }[/mm]
> = [mm]\pmat{ 1 & 2 \\ 2 & 4 }[/mm]
>  
> Stimmt das, oder habe ich das falsch verstanden, bzw.
> gerechnet?

Das stimmt nicht, du hast die Zykel nicht richtig interpretiert (was mich wundert, da du es ja in der (b) richtig machst.

Also $(1 2 3)$ entspricht [mm] $\pmat{ 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4}$, [/mm] da ja in Zykelschreibweise immer hinter einem Element das Bild des Elementes steht, das heißt hier $1 [mm] \mapsto [/mm] 2, 2 [mm] \mapsto [/mm] 3, 3 [mm] \mapsto [/mm] 1$.
Kannst du damit den Zykel $(2 4)$ "übersetzen"?

>  
> zu (b):
>  ist meine Lösung:
>  
> [mm]\pi[/mm] = (1 [mm]5)\circ[/mm] (2 7) [mm]\circ[/mm] (3 6) [mm]\circ[/mm] (4 8)
>  [mm]\delta[/mm] = (1 5 [mm]3)\circ[/mm] (2 6 [mm]4)\circ (7)\circ(8)[/mm]

[ok]

LG, Lippel


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]