Pfadintegral numerisch lösen < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 20:34 Sa 13.06.2015 | Autor: | QexX |
Aufgabe | Das Pfadintegral für das freie Teilchen soll numerisch ausgewertet werden und mit der analytischen Lösung verglichen werden. |
Hallo zusammen,
Ich gehe hier von folgenden Formeln aus:
Ganz allgemein gilt für das Pfadintegral des freien Teilchens für den Propagator:
(1) [mm] U(x_N,t_N;x_0,t_0)=\lim_{N\to\infty,\Delta t\to 0} [/mm] A [mm] \int_{\mathbb{R}}\int_{\mathbb{R}}...\int_{\mathbb{R}}exp\{\frac{i}{\hbar}\frac{m}{2}\sum_{j=0}^{N-1}\frac{(x_{i+1}-x_i)^2}{\Delta t}\}dx_1 dx_2...dx_{N-1}.
[/mm]
Dabei kann man die Integrationen über x in diesem Fall induktiv ausführen und kommt auf die bereits bekannte Formel:
(2) [mm] U=(\frac{m}{i2\pi\hbar\Delta t N})^{1/2}*\exp\{\frac{im(x_N-x_0)}{2\hbar N\Delta t}\},
[/mm]
wobei N die Anzahl der gewählten Zeitintervalle, [mm] \Delta [/mm] t die Zeitdiskretisierung ist. Dabei kann man Formel (2) als analytische Auswertung von (1) bzgl der x-Koordinaten verstehen, wobei die Zeit immer noch diskreditiert ist. Ziel soll es sein, (2) numerisch (z.B. in MATLAB) zu implementieren und mit (2) zu vergleichen. Dazu soll im Folgenden N=2 betrachtet werden, also eine sehr grobe Zeitdiskretisierung. Das verzerrt zwar das „wirkliche“ (voll analytische) Ergebnis, sollte jedoch Trotzdem eine Vergleichbarkeit des numerischen Wertes (bei dem x diskret ist) und (2) liefern. Aus (1) erhält man für N=2 und mit dem Übergang [mm] \int dx\to\sum\Delta [/mm] x:
(3) [mm] U(t_2,t_0)=\sum_{j=0}^{2}\Delta [/mm] x [mm] \exp\{(\frac{x_2-j\Delta x}{\Delta t})^2+(\frac{j\Delta x-x_0}{\Delta t})^2\}
[/mm]
Die vorkommenden Konstanten habe ich exakt implementiert: [mm] \hbar=h=1.05457173*10^{-34}, m=9.1093829140*10^{-31} (Elektronenmasse)
[/mm]
In MATLAB habe ich zunächst, ausgehend von (2), für N=2 und die konkreten Ortszustände [mm] x_0=0 [/mm] und [mm] x_2=2, [/mm] sowie dem Zeitintervall [mm] \Delta [/mm] t=1 den Propagator berechnet. Um letztlich die Übergangswahrscheinlichkeit p zu erhalten, muss davon noch das Betragsquadrat genommen werden. Man erhält
p1=687.3896
Der zugehörige MATLAB-Code:
h=1.05457173*10^(-34); [mm] %[m^2*kg/s]
[/mm]
m=9.1093829140*10^(-31); %Mass of an electron [kg]
xN=2;
x0=0;
Nt=2;
tN=2;
dt=1;
B=((2*pi*h*dt*Nt*1i)/m)^(1/2);
U=1/B.*exp((1i*m*(xN-x(1)).^2)./(2*h*dt*Nt));
[mm] p1=abs(U)^2;
[/mm]
Der Wert für p kann ja schonmal nicht stimmen, was allerdings noch an der sehr groben x Diskretisierung liegen könnte.
Als nächstes wurde einfach (3) numerisch, mittels einer while Schleife, in MATLAB implementiert:
Nx=10000; %Diskretisierung in x
x2=2;
x0=0
A=(m/(2*pi*1i*h*dt))^(Nt/2);
k=0;
a=A*dx.*exp((1i*m)/(2*h)*dt*(((x2-k*dx)/dt).^2)+((k*dx-x0)/dt).^2);
k=1;
while k<=Nx
a=a+(A*dx.*exp((1i*m)/(2*h)*dt*(((x2-k*dx)/dt).^2+(k*dx-x0)/dt).^2)));
k=k+1;
end
[mm] p2=abs(a)^2
[/mm]
Allerdings kommt hier p=681.1851 raus, was der „analytischen“ Lösung schon recht nahe kommt, und man könnte vermuten, dass es für „Nx“ (Ortsdiskretisierung) sehr groß gegen diese konvergiert.
Auffällig ist jedoch, dass sich die Größenordnungen des Fehlers (Differenz zwischen „analytischer“ und numerischer Lösung) stark schwanken, je nachdem in welcher Zeitskala man sich bewegt. Ich hatte hier ein Zeitintervall von [mm] t_0=0 [/mm] bis [mm] t_2=2 [/mm] gewählt. Würde ich allerdings auf Nanosekunden runtergehen, d.h. z.B. [mm] t_2=10^{-9} [/mm] wählen, bei GLEICHEN Diskretisierungen, erhalte ich für die analytische Wahrscheinlichkeit p1=1.3748e+12 und für die numerische p2=4.9130e+20, was um einige Größenordnungen auseinander liegt.
Woran kann das liegen?
Vielen Dank schonmal!
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:20 Mo 15.06.2015 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|