www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisPoincaré-Lemma - Beispiel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionalanalysis" - Poincaré-Lemma - Beispiel
Poincaré-Lemma - Beispiel < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Poincaré-Lemma - Beispiel: Verständnis
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 23:14 Do 01.11.2012
Autor: drix

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Sei $\omega \in \Omega^k_{\infty} (O)$ mit $\omega = \sum_I \omega_I d x^I$.

Wir definieren $P: \Omega^k (O) \rightarrow \Omega^{k-1}(O)$ durch:
P(\omega )^{(k)}:= \sum_I \sum_{s=1}^k (-1)^{s-1} \left( \int_0^1 t^{k-1} \omega_I(tx) dt \right) x^{i_s} dx^{i_1} \land \dots \land \overset{\land}{dx^{i_s}} \land \dots \land dx^{i_k}$

Sei $\omega:~x \normalfont{d} y \land \normalfont{d}z + 2 y\normalfont{d} x \land \normalfont{d} z + z \normalfont{d}x \land \normalfont{d} y \in \Omega^2(\mathfrac{R}^3})$.

Also gilt:

$  P(\omega )$
$= \int_0^1 t(tx)dt\underset{k_1}{\underbrace{(ydz-zdy)}}+2 \int_0^1 t(ty)dt\underset{k_2}{\underbrace{(xdz-zdx)}}+\int_0^1 t(tz)dt\underset{k_3}{\underbrace{(xdy-ydx)}}$
$=\frac{1}{3}(xydz-xzdy)+\frac{2}{3}(xydz-yzdx)+\frac{1}{3} (xzdy-yzdx)$
$=xydz-yzdx$




Dieses Beispiel wurde uns in der Vorlesung gegeben. Die Schritte in der Gleichung sind mir alle klar. Was ich beim nachrechnen nicht verstehe ist, wie ich durch Einsetzen von $\omega$ in die allgemeine Definition von $P$ $k_1, k_2$ und $k_3$ entstehen.

Meiner Auffassung nach müsste doch jedes Integral in der Summe folgendermaßen entstehen (hier als Bsp das erste):

$\int_0^1 t(tx)dt (x (dy \land dz)) - \int_0^1 t(tx)dt (y (dx \land dz))= \int_0^1 t(tx)dt \underset{k_1'}{\underbrace{((x (dy \land dz)) - (y (dx \land dz)))}$

Wobei nun $k_1 = k_1'$ gelten müsste. Allerdings kann ich diese Gleichheit nicht sehen. Bin ich blind, oder habe ich beim Einsetzen einen Fehler gemacht?
Danke im Voraus!
drix

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Poincaré-Lemma - Beispiel: Verstanden!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:27 Fr 02.11.2012
Autor: drix

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Ok, ich habe meinen Fehler gefunden! Wen's interessiert:

$I$ ist ein Multiindex, sodass wir im ersten Fall $y = x^{i_1}$ und $z =x^{i_2}$ haben.

Somit ergibt sich sofort für das Beispiel aus der Frage:

$ \int_0^1 t(tx)dt (ydz)) - \int_0^1 t(tx)dt (z dy))= \int_0^1 t(tx)dt \underset{k_1'}{\underbrace{(ydz -zdy)} $

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]