Poisson-Prozess Telefonhotline < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Bei einer Telefon-Hotline rufen ab 8.00 Uhr Frauen und Männer an. Insgesamt im Durchschnitt 10 Anrufe pro Stunde, davon 30% Männer.
(a) Geben Sie ein geeignetes Modell an für die Zeitpunkte der Anrufe. Unter welchen Annahmen ist dieses Modell gerechtfertigt?
(b) Mit welcher Wahrscheinlichkeit kommen die ersten drei Anrufe in Abständen von weniger als 5 Minuten?
(c) Mit welcher Wahrscheinlichkeit haben schon mindestens 3 Frauen angerufen, bevor der erste Mann anruft?
(d) Wie lange dauert es im Durchschnitt bis der erste Mann anruft? |
Hallo ihr Lieben :) Ich komme nicht ganz weiter bei b und weiß nicht ob die anderen richtig sind. Es wäre sehr lieb, wenn mir Jemand helfen könnte und kurz drüber schaut :)
Zu a)
Da die Hotline ab 8 Uhr beginnt muss die Voraussetzung gelten, dass die Uhrzeit der Anrufe keine Rolle spielt und die Zeitpunkte der Anrufe gleichverteilt sind. Es wird Poisson-Prozess zur Modellierung verwandt.
Zu b)
Ja hier habe ich Probleme -.- und weiß einfach nicht wie ich das angehen soll.
Zu c)
P(FFFM)=0,7*0,7*0,7*0,3=0,1029
Da es aber mindestens heißt müsste ich doch auch mit einrechen, dass auch mehr Frauen angerufen haben also
[mm] P(FFFFM)=0,7^4*0,3=0,07203
[/mm]
[mm] P(FFFFFM)=0,7^5*0,3=0,050421
[/mm]
[mm] P(FFFFFFM)=0,7^6*0,3=0,0352947
[/mm]
[mm] P(FFFFFFFM)=0,7^7*0,3=0,02470529
[/mm]
[mm] P(FFFFFFFFM)=0,7^8*0,3=0,017294403
[/mm]
[mm] P(FFFFFFFFFM=0,7^9*0,3=0,012106082
[/mm]
An der Stelle würde ich jetzt aufhören, da ja im Durchschnitt nur 10 Anrufe kommen. Also wäre P(mindestens 3 Frauen bevor Mann)=0,3147514 oder sollte man dies lieber anders lösen?
d) Im Durchschnitt bis der erste Mann anruft. Also gehe ich wieder von 50% als Durchschnitt aus.
P(1. Anruf=Mann)= 0,3
P(2. Anruf=Mann)=0,7*0,3=0,21
P(3. Anruf=Mann)=0,147
Schon die Addition von P1 und P2 kommt auf 0,51. Also wäre im Durchschnitt der zweite Anrufer ein Mann oder?
Danke schon Mal für die Hilfe :) Liebe Grüße
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:20 Di 17.12.2013 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|