www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikPoisson-Verteilung Server
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Poisson-Verteilung Server
Poisson-Verteilung Server < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Poisson-Verteilung Server: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 04:20 So 30.03.2008
Autor: nuggie

Aufgabe
Gegeben: Ein Server kann n Anfragen pro Sekunde bearbeiten. Die Anzahl der neuen Anfragen pro Sekunde ist Poisson-verteilt mit Parameter [mm] \lambda=3 [/mm]

Gesucht: Wie groß muss n sein, damit die Wahrscheinlichkeit der Überlasung in einer bestimmten Sekunde (d.h. es kommen mehr als n neue Anfragen) kleiner als 0,01 ist

So.

Als erstes stellt man doch die Dichtefunktion auf, die ist ja: [mm] e^{-3} [/mm] * [mm] {3^n \over n!} [/mm]

Dann summiert man ja für jedes n über die Dichten bis zu dem jeweiligen n.

Das ist ja alles klar.


In der Musterlösung ist aber als Lösung angegeben, dass wir nach folgenden suchen:

[mm] \sum_{k=3}^{n} P_3(k) [/mm] > 0,99

wie habe ich das > 0,99 zu deuten und warum muss ich das machen?

In der Musterlösung war das dann für n = 8 der Fall, und deshalb haben wir n=7 als Lösung


Ich hatte das folgende gemacht:

Bei n = 7 ist die Summe der Dichten 0,988
Bei n = 8 ist die Summe der Dichten 0,996

Also ist die Wahrscheinlichkeit, dass mehr als 7 Anfragen kommen 0,012
und die Wahrscheinlichkeit, dass mehr 8 Anfragen kommen 0,004

Das "mehr als n Anfragen kommen" habe ich dann mal gedeutet als Überlasung und somit wäre doch die Wkt für eine Überlastung < 0,1 erst bei n=8

Meiner Meinung nach wäre doch bei n=7 die Wahrscheinlichkeit für eine Überlastung noch > 0,1


// Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Poisson-Verteilung Server: Tipps
Status: (Antwort) fertig Status 
Datum: 09:41 So 30.03.2008
Autor: Infinit

Hallo nuggie,
die 0,99 kommen einfach aus der Aufgabenstellung als Gegenwahrscheiblichkeit zur Überlastung. In Deinem Beispiel hätte ich auch mit n=8 als Ergebnis gerechnet, vorausgesetzt die Zahlen sind richtig, was ich jetzt nicht nachgerechnet habe.
Viele Grüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]