www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikPoisson - Klammer
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Physik" - Poisson - Klammer
Poisson - Klammer < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Poisson - Klammer: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:09 Fr 13.03.2015
Autor: andreas01

<br> Liebe Kollegen!

wenn gilt: {G,H} = 0
mit H = Hamilton-Funktion
und G eine Größe, so folgt ja, daß G eine Konstante der Bewegung ist.
Ist nun H automatisch auch IMMER eine Konstante der Bewegung??

Mein Interesse gilt der Liouvillegleichung in der stat.Physik:
explizite Zeitableitung der Dichte = - {Dichte,H}.H sei wieder Hamiltonfunktion.
Wenn nun die explzite Zeitableitung der Dichte null ist, so muß ja die PoissonKlammer null sein
und damit die Dichte eine Konstante der Bewegung.
Ist dann H automatich AUCH eine Konstante der Bewegung??

Vielen Dank!
Der Formeleditor macht mir hier im Internetcafe leider Probleme.
Andreas
 
 
Aufgabe
 







 
<br>

        
Bezug
Poisson - Klammer: Antwort
Status: (Antwort) fertig Status 
Datum: 01:19 Sa 14.03.2015
Autor: andyv

Hallo,

> <br> Liebe Kollegen!
>  
> wenn gilt: {G,H} = 0
>  mit H = Hamilton-Funktion
>  und G eine Größe, so folgt ja, daß G eine Konstante der
> Bewegung ist.
>  Ist nun H automatisch auch IMMER eine Konstante der
> Bewegung??

Wenn es nicht explizit von der Zeit abhängt, ja.
Sollte aber keine Ueberraschung sein.

>  
> Mein Interesse gilt der Liouvillegleichung in der
> stat.Physik:
>  explizite Zeitableitung der Dichte = - {Dichte,H}.H sei
> wieder Hamiltonfunktion.
>  Wenn nun die explzite Zeitableitung der Dichte null ist,
> so muß ja die PoissonKlammer null sein
>  und damit die Dichte eine Konstante der Bewegung.

Die ist sowieso für einen mitbwegten Beobachter konstant - nach der Lioville-Gleichung.

>  Ist dann H automatich AUCH eine Konstante der Bewegung??
>  
> Vielen Dank!
>  Der Formeleditor macht mir hier im Internetcafe leider
> Probleme.
>  Andreas
>   
>   
>   
>  
>
>
>
>
>
>  
>  <br>

Liebe Grüße


Bezug
                
Bezug
Poisson - Klammer: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:00 Sa 14.03.2015
Autor: andreas01

Danke für Deine Antwort!
Andreas

Bezug
                
Bezug
Poisson - Klammer: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:38 Sa 14.03.2015
Autor: andreas01

Aufgabe
<br>


... ist es möglich, daß
{G, H}= 0 gilt,mit:

H... keine Konstante der Bewegung
und G aber schon!
?


Vielen Dank!
Andreas
 



<br>

Bezug
                        
Bezug
Poisson - Klammer: Antwort
Status: (Antwort) fertig Status 
Datum: 01:48 So 15.03.2015
Autor: andyv

Ja, wähle G(p,q,t)=p und [mm] $H(p,q,t)=\frac{p^2}{2m}+V(t)$ [/mm] mit [mm] $V'\neq [/mm] 0$.

Liebe Grüße

Bezug
                                
Bezug
Poisson - Klammer: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:53 So 15.03.2015
Autor: andreas01

Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]