www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenPolarform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Komplexe Zahlen" - Polarform
Polarform < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polarform: Tipp?
Status: (Frage) beantwortet Status 
Datum: 09:59 So 12.01.2014
Autor: gotoxy86

Aufgabe
Es ist: [mm] \left(i+\sqrt{3}\right)^{32}=\left(2\cos{\br{5\pi}{6}}+2i\sin{\br{5\pi}{6}}\right)^{32}=2^{32}\left(\cos{\br{160\pi}{6}}+i\sin{\br{160\pi}{6}}\right) [/mm]
Damit erhält man: [mm] z=4\left(\cos{\br{2\pi}{3}}+i\sin{\br{2\pi}{3}}\right) [/mm]


[mm] \varphi=\operatorname{atn}\br{-1}{\sqrt{3}}+\pi=\br{5\pi}{6} [/mm] weil [mm] $a=-\sqrt{3}<0 \wedge [/mm] b=1>0$
Dann später: [mm] \br{160\pi}{6}=\br{80\pi}{3}=26\br{2\pi}{3}\equiv\br{2\pi}{3} [/mm]
Aber gilt das immer für cos und sin gleichermassen? Ich frage, weil die coskurve immer um [mm] \br{\pi}{2} [/mm] verschoben ist.

Richtig, oder?

Und wo kommt die 2 bzw. später die 4 her.

        
Bezug
Polarform: Antwort
Status: (Antwort) fertig Status 
Datum: 10:32 So 12.01.2014
Autor: angela.h.b.


> Es ist:
> [mm]\left(i+\sqrt{3}\right)^{32}=\left(2\cos{\br{5\pi}{6}}+2i\sin{\br{5\pi}{6}}\right)^{32}=2^{32}\left(\cos{\br{160\pi}{6}}+i\sin{\br{160\pi}{6}}\right)[/mm]
>  Damit erhält man:
> [mm]z=4\left(\cos{\br{2\pi}{3}}+i\sin{\br{2\pi}{3}}\right)[/mm]
>  
> [mm]\varphi=\operatorname{atn}\br{-1}{\sqrt{3}}+\pi=\br{5\pi}{6}[/mm]
> weil [mm]a=-\sqrt{3}<0 \wedge b=1>0[/mm]
>  Dann später:
> [mm]\br{160\pi}{6}=\br{80\pi}{3}=26\br{2\pi}{3}\equiv\br{2\pi}{3}[/mm]
>  
> Richtig, oder?
>  
> Aber wo kommt die 2 bzw. später die 4 her.

Hallo,

von welcher der Zweien redest Du?
Es ist | [mm] (\wurzel{3}+i)|=\wurzel{1+3}=2. [/mm]

Die 4 ist falsch.

Falsch ist auch, daß
[mm] \wurzel{3}+i=2\cos{\br{5\pi}{6}}+2i\sin{\br{5\pi}{6}}. [/mm]
Der Winkel stimmt nicht.

Es muß doch sein
[mm] \wurzel{3}=2\cos{\varphi} [/mm] und [mm] 1=2sin{\varphi}. [/mm]

LG Angela


Bezug
                
Bezug
Polarform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:30 So 12.01.2014
Autor: gotoxy86

[mm] \left(i-\sqrt{3}\right)^{32} [/mm] sollte es heißen. Dann würde der Winkel wieder stimmen?


Ich frage mich, wo die ersten beiden Zweien herkommen.

Und anschließend, wo die 4 herkommt?

Bezug
                        
Bezug
Polarform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:18 So 12.01.2014
Autor: reverend

Hallo gotoxy86,

welche Zweien? Welche 4?
Kannst Du die mal in Deinem ersten Post markieren, damit man weiß, wovon Du redest?

Wenn Du Antworten willst, musst Du erstmal lernen, präzise Fragen zu stellen.

Grüße
reverend

Bezug
                        
Bezug
Polarform: Antwort
Status: (Antwort) fertig Status 
Datum: 17:44 So 12.01.2014
Autor: schachuzipus

Hallo,

> [mm]\left(i-\sqrt{3}\right)^{32}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

sollte es heißen. Dann würde

> der Winkel wieder stimmen?

>
>

> Ich frage mich, wo die ersten beiden Zweien herkommen.

Na, das ist der Betrag der Zahl $i-\sqrt 3$


Eine komplexe Zahl $z=a+bi$ kannst du darstellen als $r\cdot{}e^{i\cdot{}\varphi}=r\cdot{}(\cos(\varphi)+i\cdot{}\sin(\varphi)})$, wobei $r=|z|$ und $\varphi=\operatorname{arg}(z)$

>

> Und anschließend, wo die 4 herkommt?

Die scheint mir falsch zu sein! Richtig $2^{32}=...$ keine Ahnung, was das gibt ...

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]