Polstelle, Asymptote < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Gegeben ist die Funktion [mm] f(x)=\bruch{1}{x+3}-2 [/mm] |
Ich grüße nach langer Zeit wieder das beste Forum, ich habe Probleme mit den Begriffen Polstelle und Asymptote.
Die Funktion hat die Polstelle bei x=-3 die Funktion ist an dieser Stelle nicht definiert und die Asymptote y=-2, darf ich jetzt auch sagen, die Gerade x=-3 ist gleichzeitig eine senkrechte Asymptote? Die Funktion nähert sich ja dieser Geraden immer weiter an, sie geht gegen plus unendlich bzw. minus unendlich. Hat also die Funktion zwei Asymptoten? Eine Polstelle verläuft immer senkrecht? Danke an Euch
|
|
|
|
Hallo,
> Gegeben ist die Funktion [mm]f(x)=\bruch{1}{x+3}-2[/mm]
> Ich grüße nach langer Zeit wieder das beste Forum, ich
> habe Probleme mit den Begriffen Polstelle und Asymptote.
> Die Funktion hat die Polstelle bei x=-3 die Funktion ist
> an dieser Stelle nicht definiert und die Asymptote y=-2,
> darf ich jetzt auch sagen, die Gerade x=-3 ist gleichzeitig
> eine senkrechte Asymptote? Die Funktion nähert sich ja
> dieser Geraden immer weiter an, sie geht gegen plus
> unendlich bzw. minus unendlich. Hat also die Funktion zwei
> Asymptoten? Eine Polstelle verläuft immer senkrecht? Danke
> an Euch
Im Prinzip hast du Recht. Wobei man auf die Feinheiten achten sollte. Eine Stelle ist ja immer nur eine Abszisse, also ein x-Wert. Eine Polstelle ist eine Abszisse, in deren Umgebung das Schaubild einer Funktion beidseitig gegen unendlich oder minus unendlich strebt. Der Name kommt wohl aus der Kartographie, weil bei manchen älteren kartographischen Modellen die beiden Pole bei der Projektion in die Ebene im Unendlichen liegen.
Auf jeden Fall ist die Sache mit den beiden Asymptoten richtig, einer waagerechten und einer senkrechten.
Gruß, Diophant
|
|
|
|