www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenPolstelle&hebb.Definitionslück
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Rationale Funktionen" - Polstelle&hebb.Definitionslück
Polstelle&hebb.Definitionslück < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polstelle&hebb.Definitionslück: Hausaufgabe
Status: (Frage) beantwortet Status 
Datum: 17:36 Mi 21.09.2011
Autor: Raphaela16

Aufgabe
Bestimmen Sie den Definitionsberiech der Funktion.Prüfen Sie dann, ob es sich bei den Definitionslücken um Polstellen (mit oder ohne Vorzeichenwechsel) oder um hebbare Definitionslücken handelt.
a) f(x) = (3-x):(x²-9) b) g(x)= (x²+4x+3):(x²-9) c) h(x)= (x²+3x-4):(x²+x-2)
All diese Funktionen sind Brüche!

Der Definitionsbereich macht mir bei a) und b)keine schwierigkeiten.Bei a) wäre der Definitionsbereich: D=R \ [-3;3] bei b) derselbe Definitionsbereich.und bei c? wenn ich den Nenner gleich 0 setze, komm ich nicht weiter wegen dem x²..  Wie erkenne ich, ob es eine Polstelle ist oder eine hebbare Definitionslücke?Brauche ich dafür den Limes? Wenn ja, wie geht das mit dem Limes; das macht mir sehr große Probleme.
Vielen Dank für jede Antwort :)



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Polstelle&hebb.Definitionslück: Antwort
Status: (Antwort) fertig Status 
Datum: 17:55 Mi 21.09.2011
Autor: fencheltee


> Bestimmen Sie den Definitionsberiech der Funktion.Prüfen
> Sie dann, ob es sich bei den Definitionslücken um
> Polstellen (mit oder ohne Vorzeichenwechsel) oder um
> hebbare Definitionslücken handelt.
> a) f(x) = (3-x):(x²-9) b) g(x)= (x²+4x+3):(x²-9) c)
> h(x)= (x²+3x-4):(x²+x-2)
> All diese Funktionen sind Brüche!
>  Der Definitionsbereich macht mir bei a) und b)keine
> schwierigkeiten.Bei a) wäre der Definitionsbereich: D=R \
> [-3;3] bei b) derselbe Definitionsbereich.und bei c? wenn
> ich den Nenner gleich 0 setze, komm ich nicht weiter wegen
> dem x²..  Wie erkenne ich, ob es eine Polstelle ist oder

hallo,
bei der c) sollte dir das wörtchen "pq-formel" weiterhelfen

> eine hebbare Definitionslücke?Brauche ich dafür den
> Limes? Wenn ja, wie geht das mit dem Limes; das macht mir
> sehr große Probleme.

naja, in solch einfachen aufgaben reicht es, zähler und nenner zu faktorisieren und ggf. zu kürzen, wenn gleiche nullstellen für zähler und nenner vorhanden sind.
mit limes gehst du an die polstellen heran, und schaust, ob der grenzwert existiert

>  Vielen Dank für jede Antwort :)
>  
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

gruß tee

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]