www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenPolstellen, Löcher + Ableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Rationale Funktionen" - Polstellen, Löcher + Ableitung
Polstellen, Löcher + Ableitung < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polstellen, Löcher + Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:25 So 08.10.2006
Autor: garx

Aufgabe
a) Bestimme die Nullstellen, "Löcher" und Polstellen von f(x) = [mm] $\bruch{(x-7)(x²+3)(2x+9)(3x-5)}{(9x-15)(x+2)(x-5)(x²+1)}$ [/mm]

b) Bestimme die Asymptotenfunktion von [mm] f(x)=$\bruch{3x^4-11x²-5x-10}{x²-4}$ [/mm]

c) Bestimme f' von [mm] $f(x)=3x^4*\wurzel{2x-1}$. [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

Ich schreib zunächst einmal auf, was ich verstanden habe damit ihr evtl meine Fehler korrigieren könnt :)

zu a)

Nulstellen errechnet man, indem man den Zähler 0 bekommt. Da wir eine faktorisierte Funktion haben, muss in den Klammern einfach 0 rauskommen.

Nullstellen: 7,   -4,5  ,   [mm] $\bruch{5}{3}$ [/mm]


Polstellen sind wie Grenzwerte. Polstellen hat man, wenn der Nenner theoretisch 0 ergeben würde. Also wieder in den Klammern einfach 0 errechnen.

Polstellen: [mm]\bruch{5}{3} , -2 , 5 [/mm]


Löcher (Lücken?!) sind Werte für die es keinen Punkt im Graphen gibt.

Da weiß ich nicht genau wie man sie errechnet. Ich glaube, dass sind die x-Werte, die für Zähler UND Nenner 0 ergeben. In unserem Fall also [mm] $\bruch{5}{3}$ [/mm]


zu b)

Einfach eine Polynomdivision ausrechnen und die Asymptotenfunktion heraus'picken' (der Teil, der kein Rest ist)


zu c)

Ich schreibe mal auf, bis wohin ich gekommen bin:


f'(x) = (v*u')+(v'+u)      // Produktregel

f'(x) = [mm](\wurzel{2x-1}*12x³)+(\bruch{1}{2\wurzel{2x-1}}*3x^4 [/mm]

f'(x) = [mm] 12x³*\wurzel{3x-1}+3x^4*\bruch{1}{2\wurzel{2x-1}} [/mm]

Es funktioniert irgendwie nicht eine Wurzel unter einem Bruchstrich zu schreiben :/

Weiter komme ich nicht. Was muss ich noch beachten


Vielen Dank im Voraus

        
Bezug
Polstellen, Löcher + Ableitung: Aufgabe a.)
Status: (Antwort) fertig Status 
Datum: 16:34 So 08.10.2006
Autor: Loddar

Hallo garx!


Bitte stelle doch das nächste mal drei derartig unterschiedliche Aufgaben auch in unterschiedlichen Threads ...


> Nulstellen errechnet man, indem man den Zähler 0 bekommt.
> Da wir eine faktorisierte Funktion haben, muss in den
> Klammern einfach 0 rauskommen.
>  
> Nullstellen: 7,   -4,5  ,   [mm]\bruch{5}{3}[/mm]

[ok] Fast ... siehe unten!



> Polstellen sind wie Grenzwerte. Polstellen hat man, wenn
> der Nenner theoretisch 0 ergeben würde. Also wieder in den
> Klammern einfach 0 errechnen.
>  
> Polstellen: [mm]\bruch{5}{3} , -2 , 5[/mm]

[notok] Auch hier die [mm] $\bruch{5}{3}$ [/mm] besonders beachten. Da sie auch Nullstelle des Zählers ist, ist es keine Polstelle.


> Löcher (Lücken?!) sind Werte für die es keinen Punkt im
> Graphen gibt.
>  
> Da weiß ich nicht genau wie man sie errechnet. Ich glaube,
> dass sind die x-Werte, die für Zähler UND Nenner 0 ergeben.
> In unserem Fall also [mm]\bruch{5}{3}[/mm]

[daumenhoch] Stimmt soweit ...

Allerdings ist dann die [mm] $\bruch{5}{3}$ [/mm] auch keine Nullstelle dieser Funktion, da sie gar nicht erst im Definitionsbereich der Funktion enthalten ist.


Gruß
Loddar


Bezug
        
Bezug
Polstellen, Löcher + Ableitung: Aufgabe b.)
Status: (Antwort) fertig Status 
Datum: 16:35 So 08.10.2006
Autor: Loddar

Hallo garx!


> zu b)
>  
> Einfach eine Polynomdivision ausrechnen und die
> Asymptotenfunktion heraus'picken' (der Teil, der kein Rest ist)

[daumenhoch] Genau!

Willst Du uns auch Dein Ergebnis verraten?


Gruß
Loddar


Bezug
                
Bezug
Polstellen, Löcher + Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:46 So 08.10.2006
Autor: garx

Mein Asymptotenfunktion ist dann 3x²+1

Bezug
                        
Bezug
Polstellen, Löcher + Ableitung: habe ich auch!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:32 So 08.10.2006
Autor: Loddar

Hallo garx!


Das habe ich ebenfalls erhalten ... [ok] !


Gruß
Loddar


Bezug
        
Bezug
Polstellen, Löcher + Ableitung: Aufgabe c.)
Status: (Antwort) fertig Status 
Datum: 16:41 So 08.10.2006
Autor: Loddar

Hallo garx!


> zu c)
>
> f'(x) = (v*u')+(v'+u)      // Produktregel

[ok] Aber nur, wenn Du das hintere + durch ein Malzeichen ersetzt ... ;-)

  

> f'(x) = [mm](\wurzel{2x-1}*12x³)+(\bruch{1}{2\wurzel{2x-1}}*3x^4[/mm]

[notok] Du hast die innere Ableitung aus der Wurzel vergessen. Es muss heißen:

$f'(x) \ = [mm] \wurzel{2x-1}*12x^3+\bruch{1}{2*\wurzel{2x-1}}\red{*2}*3x^4$ [/mm]

Nun kann man noch alles auf einen Bruchstrich schreiben, indem man den vorderen Term mit [mm] $\wurzel{2x-1}$ [/mm] erweitert.


Gruß
Loddar


PS: Du darfst in der Formeleingabe das Wort "\wurzel" nicht mit Großbuchstaben schreiben, dann klappt das auch ;-) .



Bezug
                
Bezug
Polstellen, Löcher + Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:52 So 08.10.2006
Autor: garx

$ f'(x) \ = [mm] \wurzel{2x-1}\cdot{}12x^3+\bruch{1}{2\cdot{}\wurzel{2x-1}}\red{\cdot{}2}\cdot{}3x^4 [/mm] $


Wieso muss da denn noch *2 hin? Das versteh ich nicht.

Die Ableitung von [mm] $\wurzel{2x-1}$ [/mm] ist meiner Meinung nach

[mm] \bruch{1}{2} * (2x-1)^-\bruch{1}{2} [/mm]


Bitte um Korrektur :)

Bezug
                        
Bezug
Polstellen, Löcher + Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:02 So 08.10.2006
Autor: M.Rex


> [mm]f'(x) \ = \wurzel{2x-1}\cdot{}12x^3+\bruch{1}{2\cdot{}\wurzel{2x-1}}\red{\cdot{}2}\cdot{}3x^4[/mm]
>  
>
> Wieso muss da denn noch *2 hin? Das versteh ich nicht.
>  
> Die Ableitung von [mm]\wurzel{2x-1}[/mm] ist meiner Meinung nach
>
> [mm]\bruch{1}{2} * (2x-1)^-\bruch{1}{2}[/mm]
>  
>
> Bitte um Korrektur :)

Nein, hier musst du die MBKettenregel anwenden.
[mm] f(x)=\wurzel{2x-1} [/mm]
Jetzt definieren wir g(x):=2x-1
Also [mm] \wurzel{2x-1}=f(g(x)) [/mm]
Das abgeleitet ergibt mit der Kettenregel
[mm] f'(g(x))\cdot{}g'(x), [/mm] also hier
[mm] \bruch{1}{2\wurzel{g(x)}}*\red{2}=\bruch{\not2}{\not2\wurzel{2x-1}}=\bruch{1}{\wurzel{2x-1}} [/mm]

Marius



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]