www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitPolstellen von Funktionen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Stetigkeit" - Polstellen von Funktionen
Polstellen von Funktionen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polstellen von Funktionen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 00:10 Do 10.12.2009
Autor: kolja2

Aufgabe
Untersuchen Sie ob die folgenden drei Funktionen von [mm] f_{i}:\IR\backslash\{1\}\to\IR [/mm] im Punkt 1 eine Polstelle (mit oder ohne Vorzeichenwechsel?) haben oder stetig fortsetzbar sind.

[mm] f_{1}(x)=\bruch{x^{3}-1}{x-1} [/mm]

[mm] f_{2}(x)=\bruch{x+1}{x-1} [/mm]

[mm] f_{3}(x)=\bruch{1}{x^{2}-2x+1} [/mm]

Hi Leute,

ich habe diese Frage in keinem anderen Forum auf anderen Internetseiten gestellt.
Ich bin mir bei der Lösung dieser Aufgabe nicht ganz sicher.
Also eine Polstelle ist eine Definitionslücke einer Funktion. Um jetzt die Polstellen zu berechnen, dachte ich mir, ich setze den Nenner gleich 0 und setze dieses x in den Zähler?
Sollte das Ergebnis 0 sein, gäbe es keine Polstelle, kommt im Zähler und Nenner das gleiche raus gibt es eine Polstelle ohne Vorzeichenwechsel und kommt im Zähler und Nenner etwas unterschiedliches raus, gibt es eine Polstelle ohne Vorzeichenwechsel.
Bin ich soweit auf korrektem Weg?

Danke schon mal für die Hilfe!

        
Bezug
Polstellen von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:45 Do 10.12.2009
Autor: reverend

Hallo kolja2,

interessante Idee, aber noch nicht vollständig.

Betrachte [mm] f_4(x)=\bruch{x^2+2x-3}{x^3-x^2-x+1} [/mm]

lg
reverend

Bezug
                
Bezug
Polstellen von Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:50 Do 10.12.2009
Autor: kolja2

Hi,

danke für die schnelle Antwort, aber irgendwie hilft mir das gar nicht weiter.
Ich weiß nicht, woher das kommt, was ich damit machen soll etc.

Bezug
                        
Bezug
Polstellen von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:02 Do 10.12.2009
Autor: reverend

Hallo kolja2,

>  Ich weiß nicht, woher das kommt,

Also, es kommt von Herzen...

> was ich damit machen
> soll etc.

Aufgabe
  Untersuchen Sie ob die folgenden (drei) Funktionen von $ [mm] f_{i}:\IR\backslash\{1\}\to\IR [/mm] $ im Punkt 1 eine Polstelle (mit oder ohne Vorzeichenwechsel?) haben oder stetig fortsetzbar sind.  


Soweit auch zu [mm] f_4. [/mm] Du solltest daran erkennen, was an Deinem Ansatz noch fehlt. Deine Grundidee ist nicht schlecht, aber eben nicht vollständig. Schau mal nach Nullstellen des Zählers und des Nenners. x=1 wird, angesichts der Aufgabenumgebung, dabei womöglich eine wesentliche Rolle spielen...

lg
rev


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]