www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesPolyeder
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Sonstiges" - Polyeder
Polyeder < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polyeder: trennende Hyperebene gesucht
Status: (Frage) beantwortet Status 
Datum: 22:18 Di 30.11.2004
Autor: cremchen

Halli hallo!

Und noch eine Aufgabe bei der ich leider überhaupt keinen Plan habe....

Die zwei Polyeder [mm] {\cal P}_{1}=\{x\in\IR^{n} : Ax\le{b}\} [/mm] und [mm] {\cal P}_{2}=\{x\in\IR^{n} : Cx\le{d}\} [/mm] seien nichtleer und disjunkt. Gesucht ist eine Hyperebene, die [mm] {\cal P}_{1} [/mm] und [mm] {\cal P}_{2} [/mm] strikt trennt, d.h. gesucht ist ein [mm] a\in\IR^{n} [/mm] und [mm] \alpha\in\IR, [/mm] so dass [mm] a^{T}x\ge\alpha \forall{x}\in{\cal P}_{1}, a^{T}x<\alpha \forall{x}\in{\cal P}_{2}. [/mm]

Formulieren Sie dies als lineares Problem.

Ein Hinweis ist auch noch dabei:
Für a und [mm] \alpha [/mm] muß gelten: [mm] inf_{x\in{\cal P}_{1}}a^{T}x>\alpha>sup_{x\in{\cal P}_{2}}a^{T}x. [/mm]
Vereinfachen Sie Infimum und Supremum mit Hilfe der LP-Dualität.

(Die LP-Dualität besagt:
Das zu dem primalen Problem
min [mm] c^{T}x [/mm]
s.t. [mm] Ax\ge{b} [/mm]
      [mm] x\ge{0} [/mm]
zugehörige duale Problem lautet:
max [mm] b^{T}y [/mm]
s.t. [mm] A^{T}y\le{c} [/mm]
      [mm] y\ge{0} [/mm] )

Also ich habe so eine Umformung auch schonmal gemacht aber hier hat man doch gar keine solche Form gegeben.....

Ich weiß hier echt nicht wie ich rangehen soll!
Wäre dankbar für jede Hilfe die ich kriegen kann!

Liebe Grüße und schonmal ein ganz großes Danke
Ulrike

        
Bezug
Polyeder: Antwort
Status: (Antwort) fertig Status 
Datum: 01:15 Mi 01.12.2004
Autor: Hugo_Sanchez-Vicario

Hallo cremchen,

versuch es mal so:

such die beiden Punkte auf den beiden Polyedern, die den geringsten Abstand von einander haben.

Diese Punkte haben eine Verbindungsstrecke und die mitten durch die Strecke gehende, darauf senkrecht stehende Hyperebene könnte eine sein, die deine (konvexen) Polyeder trennt.

Hugo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]