www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenOperations ResearchPolyeder P = conv(V) + cone(W)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Operations Research" - Polyeder P = conv(V) + cone(W)
Polyeder P = conv(V) + cone(W) < Operations Research < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Operations Research"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polyeder P = conv(V) + cone(W): Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:04 So 08.05.2011
Autor: Gratwanderer

Aufgabe
Seien P ein Polyeder und seien V, W [mm] \subseteq \IR^n. [/mm] Zeigen Sie: P = conv(V) + cone(W) genau dann, wenn x + P = conv(x+V) + cone(W) ist für alle x [mm] \in \IR^n [/mm]

Hallo,

zu obiger Aufgabe habe ich folgendes bereits gemacht:

[mm] \Leftarrow [/mm] :

ang. x + P = conv(x+V) + cone(W) für alle x [mm] \in \IR^n [/mm]

dann gilt dies insbesondere auch für x = 0

[mm] \Rightarrow [/mm] :

ang. P = conv(V) + cone(W)

addiert man auf beiden Seiten den Vektor x

[mm] \gdw [/mm] x + P = x + conv(V) + cone(W)

jetzt habe ich mir überlegt zu zeigen, dass

x + conv(V) = conv(x+V)

und habe so angefangen:

conv(V) = [mm] \{\summe_{i=1}^{n} \lambda_i v_i | v_i \in V, n \in \IN, \summe_{i=1}^{n} \lambda_i = 1; \lambda_i \ge 0 \} [/mm]

jetzt habe ich mir ein bel. Element aus conv(V) rausgenommen und es so aufgeschrieben:

x + conv(V) = x + [mm] \summe_{i=1}^{n} \lambda_i v_i [/mm]

aber jetzt komme ich leider nicht mehr weiter. Könnte mir jemand weiterhelfen?

Viele Grüße,
Gratwanderer

        
Bezug
Polyeder P = conv(V) + cone(W): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:25 So 08.05.2011
Autor: wieschoo

Wenn du x zum Polyeder dazu addierst, dann gilt dies insbesondere auch für die Ecken.

Wenn [mm] $\lambda=(\lambda_1 [/mm] ... [mm] \lambda_n)=e_k$ [/mm] ein Einheitsvektor ist, dann erhälst du in deiner Summe nur die Eckpunkte vom Polyeder.

Damit kannst du das x auf die Ecken schieben (indem du es in die Summe hineinziehst) und hast das, was du brauchst.

Bezug
        
Bezug
Polyeder P = conv(V) + cone(W): Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Di 10.05.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Operations Research"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]