www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInduktionsbeweisePolynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Induktionsbeweise" - Polynom
Polynom < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:29 Fr 09.11.2012
Autor: Ferma

Hallo,
wie kann man beweisen, dass a^(2n-1)+b^(2n-1) durch (a+b) teilbar ist?
Beispiele mit Zahlen [mm] 5^{2*3-1}+7^5=19932=>/12=1661 [/mm]
Danke im Voraus!
Ferma

        
Bezug
Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 08:03 Fr 09.11.2012
Autor: Marcel

Hallo,

> Hallo,
>  wie kann man beweisen, dass a^(2n-1)+b^(2n-1) durch (a+b)
> teilbar ist?
> Beispiele mit Zahlen [mm]5^{2*3-1}+7^5=19932=>/12=1661[/mm]

das ist aber "sehr grob" aufgeschrieben, aber ich weiß, was Du meinst. Übrigens
ist das nur EIN Beispiel. ;-)

>  Danke im Voraus!
>  Ferma

Vorschlag: Wenn man keine Idee hat, versuch' mal,
[mm] $$(a^{2n-1}+b^{2n-1}):(a+b)$$ [/mm]
per Polynomdivision zu lösen.

Wenn's nicht klappt oder Du so nichts erkennst/verwirrt bist, nicht siehst, wo diese
Polynomdiviion "endet", mach' es halt mal beispielsweise erst für konkrete [mm] $n\,,$ [/mm]
etwa für [mm] $n=3\,$ [/mm] wie oben (aber [mm] $a,b\,$ [/mm] "allgemein" lassen!), dann mal etwa für [mm] $n=7\,.$ [/mm]

Wenn man dann sieht: Okay, Polynomdivision liefert:
[mm] $$(a^{2n-1}+b^{2n-1}):(a+b)=\text{Vermutung}(n)$$ [/mm]
wobei [mm] $\text{Vermutung}(n)$ [/mm] vermutlich irgendeine Formel ist, wo eine Summe drin
vorkommt, dann beweist man das ganze, indem man mit
[mm] $$(a+b)*\text{Vermutung}(n)$$ [/mm]
startet und dann hoffentlich zeigen kann, dass das am Ende [mm] $=a^{2n-1}+b^{2n-1}$ [/mm]
ergibt!

Gruß,
  Marcel

Bezug
        
Bezug
Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 10:31 Fr 09.11.2012
Autor: fred97

Du kannst das auch induktiv erledigen:

Für den Induktionsschritt:

[mm] a^{2n+1}+b^{2n+1}=a^{2n-1}a^2+a^{2n-1}b^2-a^{2n-1}b^2+b^{2n-1}b^2 [/mm]

Mach Du mal weiter.

FRED

Bezug
        
Bezug
Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 10:54 Fr 09.11.2012
Autor: reverend

Hallo Ferma,

>  wie kann man beweisen, dass a^(2n-1)+b^(2n-1) durch (a+b)
> teilbar ist?
> Beispiele mit Zahlen [mm]5^{2*3-1}+7^5=19932=>/12=1661[/mm]

Wenn Du das nur in [mm] \IN [/mm] oder [mm] \IZ [/mm] zeigen willst, ist es ganz einfach.
Wir betrachten das alles mal [mm] \mod{(a+b)}. [/mm]

Dann ist klar, dass [mm] b\equiv -a\mod{(a+b)} [/mm] ist und damit

[mm] a^{2n-1}+b^{2n-1}\equiv a^{2n-1}+(-a)^{2n-1}\equiv 0\mod{(a+b)} [/mm]

Genauso leicht kann man dann zeigen, dass [mm] (a-b)\big|a^n-b^n. [/mm] Aber das war hier ja gar nicht gefragt.

Grüße
reverend



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]