Polynomdivision < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Bestimmen Sie jeweils alle komplexen Lösungen der folgenden Gleichungen:
[mm] z^3-z^2-z-2=0 [/mm] |
Einen schönen guten Morgen!
Wie ihr seht geht es bei meinem Thema um Polynomdivision mit komplexen Zahlen. Ich habe vor 7 Jahren mein Abi gemacht und komplexe Zahlen hatten wir nicht behandelt, jetzt an der Uni schaffen sie mich! Wir haben zwar ein Matheskript, aber ganz ehrlich verstehe ich beim Lesen meist nur Bahnhof! Ich versuche so gut es geht mich selbst einzulesen bzw. mit anderen das zu erarbeiten, aber bisher nur mit mäßigem Erfolg.
Bei der Aufgabe geht es ja um Polynomdivision, nun nach dem Schema für nicht komplexe Zahlen hab auch angefangen mit "1. Nullstelle raten" nach einem kleinen Schubs hab ich sie auch bei x=2 gefunden.
Aber jetzt weiß ich nicht recht wie weiter, wenn sie bei x=2 ist, wäre die dazu passende komplexe Zahl ja 2a+0i.
Wandle ich jetzt meine Ausgansgleichung in diese Form um, also [mm] (a+bi)^3-(a+bi)^2 [/mm] usw. oder wandle ich das in Polarkoordinaten um, wobei ich da nicht weiß, ob ich für den Real- und Imaginärteil dann einfach z. Bsp. die 1 annehmen darf oder bin ich gar ganz auf dem Holzweg?
Ich sag schonmal danke für die Bemühungen!
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.onlinemathe.de/forum/Polynomdivision-mit-komplexen-Zahlen-2
|
|
|
|
Hallo Verwirrtheit und herzlich ,
> Bestimmen Sie jeweils alle komplexen Lösungen der
> folgenden Gleichungen:
> [mm]z^3-z^2-z-2=0[/mm]
> Einen schönen guten Morgen!
>
> Wie ihr seht geht es bei meinem Thema um Polynomdivision
> mit komplexen Zahlen. Ich habe vor 7 Jahren mein Abi
> gemacht und komplexe Zahlen hatten wir nicht behandelt,
> jetzt an der Uni schaffen sie mich! Wir haben zwar ein
> Matheskript, aber ganz ehrlich verstehe ich beim Lesen
> meist nur Bahnhof! Ich versuche so gut es geht mich selbst
> einzulesen bzw. mit anderen das zu erarbeiten, aber bisher
> nur mit mäßigem Erfolg.
>
> Bei der Aufgabe geht es ja um Polynomdivision, nun nach dem
> Schema für nicht komplexe Zahlen hab auch angefangen mit
> "1. Nullstelle raten" nach einem kleinen Schubs hab ich sie
> auch bei x=2 gefunden.
>
> Aber jetzt weiß ich nicht recht wie weiter, wenn sie bei
> x=2 ist, wäre die dazu passende komplexe Zahl ja 2a+0i.
>
> Wandle ich jetzt meine Ausgansgleichung in diese Form um,
> also [mm](a+bi)^3-(a+bi)^2[/mm] usw. oder wandle ich das in
> Polarkoordinaten um, wobei ich da nicht weiß, ob ich für
> den Real- und Imaginärteil dann einfach z. Bsp. die 1
> annehmen darf oder bin ich gar ganz auf dem Holzweg?
Mache es wie im Reellen:
Hast du eine NST [mm]z_N[/mm] gefunden, rechne [mm](z^3-z^2-2-2):(z\red{-}z_N)[/mm]
Also
[mm](z^3-z^2-z-2):(z-2)=z^2\ldots[/mm]
[mm]-(z^3-2z^2)[/mm]
[mm]-----------[/mm]
[mm] \ \ z^2-z[/mm]
usw.
Das quadratische Ergebnispolynom kannst du mit den stadtbekannten Methoden zur Nullstellenbestimmung quadrat. Gleichungen weiter verarzten.
>
> Ich sag schonmal danke für die Bemühungen!
>
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
>
> http://www.onlinemathe.de/forum/Polynomdivision-mit-komplexen-Zahlen-2
Gruß
schachuzipus
|
|
|
|