www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Polynome
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis des R1" - Polynome
Polynome < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynome: Verständnis + Tipp
Status: (Frage) beantwortet Status 
Datum: 13:48 Mi 08.12.2010
Autor: TrockenNass

Aufgabe
1. Das Polynom [mm] x^4-x^3-10x^2-x+1 [/mm] besitzt vier verschiedene reelle Nullstellen

2. Jedes Polynom ungeraden Grades, [mm] \summe_{k=0}^{2n+1} a_k x^k [/mm] mit [mm] n\in \IN, a_k\in \IR [/mm] und [mm] a_{2n+1}\not=0, [/mm] hat eine reelle Nullstelle

zu 1.
Genügt es die Nullstellen mit der Polynomdivison zu berechen? Oder muss ich noch irgendwas zeigen.

zu 2.
zunächst einmal eine Frage zum Verständnis:
Die Aufgabenstellung sagt aus: Wenn ich z.B. eine Funktion 5. Grades habe, dann hat die Funktion auch 5 Nullstellen. D.h. pro Polynom kommt eine Nullstelle dazu.
Wenn ich die Aufgabe richtig verstanden hab, wie fange ich mit dem Beweis an?

        
Bezug
Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 15:00 Mi 08.12.2010
Autor: schachuzipus

Hallo TrockenNass,

> 1. Das Polynom [mm]x^4-x^3-10x^2-x+1[/mm] besitzt vier verschiedene
> reelle Nullstellen
>
> 2. Jedes Polynom ungeraden Grades, [mm]\summe_{k=0}^{2n+1} a_k x^k[/mm]
> mit [mm]n\in \IN, a_k\in \IR[/mm] und [mm]a_{2n+1}\not=0,[/mm] hat eine
> reelle Nullstelle
> zu 1.
> Genügt es die Nullstellen mit der Polynomdivison zu
> berechen?

Das kannst du versuchen. Wenn du die 4 Nullstellen explizit angeben kannst, bist du fertig.

> Oder muss ich noch irgendwas zeigen.

Vllt. ist es einfacher, das Polynom zu zerlegen ist [mm](x^2+ax+b)(x^2+cx+d)[/mm] mit noch zu ermittelnden Koeffizienten [mm]a,b,c,d[/mm].

Dann kannst du die verbleibenden quadrat. Polynome untersuchen - dafür gibt's ja Formeln ...


Ansonsten kannst du auch den Zwischenwertsatz nutzen, Polynome sind ja stetig, suche dir Intervalle [mm][a,b][/mm] mit [mm]p(a)<0[/mm] und [mm]p(b)>0[/mm] (oder umgekehrt und wende den ZWS an


>
> zu 2.
> zunächst einmal eine Frage zum Verständnis:
> Die Aufgabenstellung sagt aus: Wenn ich z.B. eine Funktion
> 5. Grades habe, dann hat die Funktion auch 5 Nullstellen.

Nein, da steht doch nur: es gibt EINE Nullstelle

> D.h. pro Polynom kommt eine Nullstelle dazu.

Was meinst du mit "Da kommt ein Polynom dazu" ??

Die Summenschreibweise ist doch nur eine abkürzende Darstellung für ein Polynom ungeraden Grades.

Ausgeschrieben steht da: Zeige, dass für bel. [mm]n\in\IN[/mm] das Polynom [mm]a_{2n+1}x^{2n+1}+a_{2n}x^{2n}+\ldots+a_1x+a_0[/mm] ([mm]a_{2n+1}\neq 0[/mm]) (mind.) eine reelle NST hat.


> Wenn ich die Aufgabe richtig verstanden hab, wie fange ich
> mit dem Beweis an?

Nutze die Stetigkeit von Polynomen und den ZWS.

Was kann für [mm]x\to\pm\infty[/mm] passieren?

Tipp: Fallunterscheidung bzg. [mm]a_{2n+1}[/mm]

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]