www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisPolynome, zwei komp. Variablen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - Polynome, zwei komp. Variablen
Polynome, zwei komp. Variablen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynome, zwei komp. Variablen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:56 Sa 23.04.2011
Autor: Reticella

Aufgabe
p(x,y)=[mm]\sum_{k,l=0}^{N}a_{kl}x^ky^k [/mm]  Polynom in zwei Variablen gegeben, wobei N [mm]\in\IN [/mm], [mm] a_{kl} \in \IC [/mm].

Zu zeigen: es gibt ein Polynom q in zwei Variablen mit [mm]p(x,y)=q(z,\overline{z} [/mm]) für alle  [mm] z=x+iy \in \IC [/mm].



Also ich würde wie folgt ansetzen:

Es gilt ja [mm]x=\frac{1}{2}(z+\overline{z}) [/mm] und [mm]y=\frac{1}{2}i(\overline{z} -z)[/mm]. Das heißt, es gilt:

[mm]p(x,y)=p(\frac{1}{2}(z+\overline{z}),\frac{1}{2}i(\overline{z} -z))[/mm].

Dies müsste ich doch jetzt als [mm]q(z,\overline{z}) [/mm] scheiben können, da die Koeffizienten ja komplex sein dürfen...
Ich weiß nur nicht, wie ich das richtig begründe/beweise...

Kann mir da jemand helfen oder einen Tipp geben?

Vielen Dank im Vorraus,
Reticella


        
Bezug
Polynome, zwei komp. Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:49 Sa 23.04.2011
Autor: rainerS

Hallo!

> p(x,y)=[mm]\sum_{k,l=0}^{N}a_{kl}x^ky^k[/mm]  Polynom in zwei
> Variablen gegeben, wobei N [mm]\in\IN [/mm], [mm]a_{kl} \in \IC [/mm].
>  
> Zu zeigen: es gibt ein Polynom q in zwei Variablen mit
> [mm]p(x,y)=q(z,\overline{z} [/mm]) für alle  [mm]z=x+iy \in \IC [/mm].
>  
>
> Also ich würde wie folgt ansetzen:
>  
> Es gilt ja [mm]x=\frac{1}{2}(z+\overline{z})[/mm] und
> [mm]y=\frac{1}{2}i(\overline{z} -z)[/mm]. Das heißt, es gilt:
>  
> [mm]p(x,y)=p(\frac{1}{2}(z+\overline{z}),\frac{1}{2}i(\overline{z} -z))[/mm].
>  
> Dies müsste ich doch jetzt als [mm]q(z,\overline{z})[/mm] scheiben
> können, da die Koeffizienten ja komplex sein dürfen...
>  Ich weiß nur nicht, wie ich das richtig
> begründe/beweise...
>  
> Kann mir da jemand helfen oder einen Tipp geben?

Zwei Ideen: 1. Du könntest es mit Induktion über N beweisen. 2. Beweise die Aussage zunächst für spezielle Polynome der Form [mm] $x^ky^l$ [/mm] (z.B. mit binomischer Formel).

Viele Grüße
   Rainer

Bezug
                
Bezug
Polynome, zwei komp. Variablen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:54 Sa 23.04.2011
Autor: Reticella


Ich habs jetzt mehrfach mit Induktion versuch, aber irgendwie führt das zu nichts. Im Induktionsschritt vermehren sich die Terme ja enorm, was die Sache nicht gerade einfacher macht.

Ich würde jetzt einfach meine umgerechneten x und y (welche ja von z und [mm] \overline{z}[/mm] abhängen) in p(x,y) einsetzen. Man sieht dann ja, wenn man einige Terme ausrechnet (is ja auch iwie klar) das nur Potenzen von z und [mm] \overline{z}[/mm] rauskommen^^. Das man dann die Koeffizienten von gleichen Potenzen zusammenfasst erhält man ja dan q(z,[mm] \overline{z}[/mm]). Das sollte doch eigentlich reichen?? Ich soll q ja nicht angeben...

Aber wirklich schön ist das nicht (und irgendwie kommt mir das ein bisschen zu einfach vor)...Hat jemand noch eine Idee wie es besser geht?



Bezug
                        
Bezug
Polynome, zwei komp. Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:15 Mo 25.04.2011
Autor: rainerS

Hallo!

>
> Ich habs jetzt mehrfach mit Induktion versuch, aber
> irgendwie führt das zu nichts. Im Induktionsschritt
> vermehren sich die Terme ja enorm, was die Sache nicht
> gerade einfacher macht.
>  
> Ich würde jetzt einfach meine umgerechneten x und y
> (welche ja von z und [mm]\overline{z}[/mm] abhängen) in p(x,y)
> einsetzen. Man sieht dann ja, wenn man einige Terme
> ausrechnet (is ja auch iwie klar) das nur Potenzen von z
> und [mm]\overline{z}[/mm] rauskommen^^. Das man dann die
> Koeffizienten von gleichen Potenzen zusammenfasst erhält
> man ja dan q(z,[mm] \overline{z}[/mm]). Das sollte doch eigentlich
> reichen?? Ich soll q ja nicht angeben...

Im Prinzip ja.

Mach doch das, was ich dir vorgeschlagen habe: weise es erst einmal für den einfachsten Fall [mm] $x^ky^l$ [/mm] nach. Da kannst du sogar direkt per binomischem Lehrsatz das Polynom angeben, das herauskommt.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]