www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSteckbriefaufgabenPolynomfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Steckbriefaufgaben" - Polynomfunktion
Polynomfunktion < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynomfunktion: Wo liegt Fehler?
Status: (Frage) beantwortet Status 
Datum: 21:00 Do 09.10.2008
Autor: Dinker

Aufgabe
http://www.onlinemathe.de/forum/Polynomfunktion-Wo-liegt-Fehler

Eine Parabel 4. Ordnung hat im Nullpunkt einen Terassenpunkt und bei x=1 eine weiteren Wendepunkt. Sie schneidet die x-Achse mit der Steigung m = 4
Gesuch ist die Gleichung der Parabal

f(x) = a [mm] x^4 [/mm] + b [mm] x^3 [/mm] + c [mm] x^2 [/mm] + dx + e
f'(x) = 4a [mm] x^3 [/mm] + 3b [mm] x^2 [/mm] + 2xc + d
f''(x) = 12a [mm] x^2 [/mm] + 6bx + 2c

Bedingung: geht durch Nullpunkt, d. h,
0 = e

Bedingung hat im Nullpunkt einen Terrassenpunkt, d. h.
f'(0) = 0
f''(0) = 0
0 = d
0 = 2c

Nun mache ich mal die Funktionsgleichung etwas kürzer....
f(x) = a [mm] x^4 [/mm] + b [mm] x^3 [/mm]
f'(x) = 4a [mm] x^3 [/mm] + 3b [mm] x^2 [/mm]
f''(x) = 12a [mm] x^2 [/mm] + 6bx

Bedingung: Wendepunkt bei x = 1
f''(1)= 0
0 = 12a + 6b

Nun versuche ich die komplette Funktion durch a auszudrücken b = -2a
d. h.
f(x) = a [mm] x^4 [/mm] -a [mm] x^3 [/mm]
f'(x) = 4a [mm] x^3 [/mm] -6a [mm] x^2 [/mm]

versuche letzte Bedingung : Schneidet die X-Achse mit einer Steigung von m=4 einzubauen
f(x) = 0
0 = a [mm] x^4 [/mm] -a [mm] x^3 [/mm]
0 = [mm] x^3 [/mm] (ax-a)   da komme ich auf die Werte x1 = 0 und x2 = 1
f'(x) = 4
4 = 4a - 6a
a = -2

Setze ich nun in Funktion ein
f(x)= -2x ^4 [mm] +2x^3 [/mm]

Kann mir jemand sagen, wo der Fehler liegt?
Besten Dank

        
Bezug
Polynomfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:06 Do 09.10.2008
Autor: abakus


>
> http://www.onlinemathe.de/forum/Polynomfunktion-Wo-liegt-Fehler
>  Eine Parabel 4. Ordnung hat im Nullpunkt einen
> Terassenpunkt und bei x=1 eine weiteren Wendepunkt. Sie
> schneidet die x-Achse mit der Steigung m = 4
>  Gesuch ist die Gleichung der Parabal
>  
> f(x) = a [mm]x^4[/mm] + b [mm]x^3[/mm] + c [mm]x^2[/mm] + dx + e
>  f'(x) = 4a [mm]x^3[/mm] + 3b [mm]x^2[/mm] + 2xc + d
>  f''(x) = 12a [mm]x^2[/mm] + 6bx + 2c
>  
> Bedingung: geht durch Nullpunkt, d. h,
>  0 = e
>  
> Bedingung hat im Nullpunkt einen Terrassenpunkt, d. h.
>  f'(0) = 0
>  f''(0) = 0
>  0 = d
>  0 = 2c
>  
> Nun mache ich mal die Funktionsgleichung etwas kürzer....
>  f(x) = a [mm]x^4[/mm] + b [mm]x^3[/mm]
>  f'(x) = 4a [mm]x^3[/mm] + 3b [mm]x^2[/mm]
> f''(x) = 12a [mm]x^2[/mm] + 6bx
>  
> Bedingung: Wendepunkt bei x = 1
>  f''(1)= 0
> 0 = 12a + 6b
>  
> Nun versuche ich die komplette Funktion durch a
> auszudrücken b = -2a
>  d. h.
> f(x) = a [mm]x^4[/mm] -a [mm]x^3[/mm]
>  f'(x) = 4a [mm]x^3[/mm] -6a [mm]x^2[/mm]
>
> versuche letzte Bedingung : Schneidet die X-Achse mit einer
> Steigung von m=4 einzubauen

Das heißt: in einem der Schnittpunkte mit der x-Achse (es gibt zwei davon, weil  f(x) = a [mm]x^4[/mm] -a [mm]x^3[/mm] ZWEI Nullstellen hat,
ist die Ableitung 4. Welches sind die 2 Nullstellen?
Gruß Abakus




>  f(x) = 0
>  0 = a [mm]x^4[/mm] -a [mm]x^3[/mm]
>  0 = [mm]x^3[/mm] (ax-a)   da komme ich auf die Werte x1 = 0 und x2
> = 1
>  f'(x) = 4
>  4 = 4a - 6a
>  a = -2
>  
> Setze ich nun in Funktion ein
>  f(x)= -2x ^4 [mm]+2x^3[/mm]
>  
> Kann mir jemand sagen, wo der Fehler liegt?
>  Besten Dank


Bezug
        
Bezug
Polynomfunktion: Dein Fehler
Status: (Antwort) fertig Status 
Datum: 21:10 Do 09.10.2008
Autor: Loddar

Hallo Dinker!



> Nun versuche ich die komplette Funktion durch a
> auszudrücken b = -2a

[ok]


> d. h. f(x) = a [mm]x^4[/mm] -a [mm]x^3[/mm]

Und wo ist hier der Faktor $2_$ verblieben vor dem 2. Term? Daher erhältst Du später auch ein falsche Nullstelle.


Gruß
Loddar


Bezug
                
Bezug
Polynomfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:17 Do 09.10.2008
Autor: Dinker

Hallo
Hätte ich:     f(x) = a [mm] x^4 [/mm] -2a [mm] x^3 [/mm]   eingesetzt, dann sollte es stimmen?
Wäre ausser diesem kleinen Missgeschick sonst alles richtig?

besten Dank
Gruss

Bezug
                        
Bezug
Polynomfunktion: prinzipiell richtig
Status: (Antwort) fertig Status 
Datum: 21:21 Do 09.10.2008
Autor: Loddar

Hallo Dinker!


> Hätte ich:     f(x) = a [mm]x^4[/mm] -2a [mm]x^3[/mm]   eingesetzt, dann sollte es stimmen?

[ok] Ja!


> Wäre ausser diesem kleinen Missgeschick sonst alles richtig?

[ok] Natürlich dann mit anderer Nullstelle und auch anderen Werte am Ende für $a_$ und $b_$ .
Aber der prinzipielle Weg war / ist richtig ...


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]