www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenPolynomfunktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Ganzrationale Funktionen" - Polynomfunktionen
Polynomfunktionen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynomfunktionen: Symmetrie
Status: (Frage) beantwortet Status 
Datum: 18:08 Fr 07.01.2011
Autor: ponysteffi

Aufgabe
Symmetrieeigenschaften von Polynomfunktionen vom Typ
y = [mm] a*x^{3} [/mm] + b * [mm] x^{2} [/mm] + c * x + d

Hallo

ich habe eine allgemeine Frage zu Polynomfunktionen: Kann man allgemein sagen, dass bei Funktionen die punktsymmetrisch zum Nullpunkt sind gilt: (Bsp. 3. Grad)
[mm] b*x^{2} [/mm] = d = 0

und bei Funktionen die Spiegelsymmetrisch zum Nullpunkt sind:
[mm] a*x^{3} [/mm] = c*x = 0
??

        
Bezug
Polynomfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:13 Fr 07.01.2011
Autor: schachuzipus

Hallo ponysteffi,

> Symmetrieeigenschaften von Polynomfunktionen vom Typ
> y = [mm]a*x^{3}[/mm] + b * [mm]x^{2}[/mm] + c * x + d
> Hallo
>
> ich habe eine allgemeine Frage zu Polynomfunktionen: Kann
> man allgemein sagen, dass bei Funktionen die
> punktsymmetrisch zum Nullpunkt sind gilt: (Bsp. 3. Grad)
> [mm]b*x^{2}[/mm] = d = 0

Eher [mm]b=d=0[/mm]

>
> und bei Funktionen die Spiegelsymmetrisch zum Nullpunkt
> sind:
> [mm]a*x^{3}[/mm] = c*x = 0

[mm]a=c=0[/mm]

Ja, das stimmt.

Ein zum Ursprung punktsymmetrisches Polynom enthält nur ungerade Potenzen von [mm]x[/mm], ein achsensymmetrisches (zur y-Achse) nur gerade Potenzen von [mm]x[/mm].

Das kannst du selber kurz beweisen (oder nachrechnen)

Bei Punktsymmetrie muss ja gelten [mm]p(-x)=-p(x)[/mm] und bei Achsensymmetrie [mm]p(-x)=p(x)[/mm]

> ??

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]