Polynomkoeffizienten niedrige < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:25 Mo 04.04.2005 | Autor: | minoss |
Hallo alle zusammen
Ich würde gerne für eine Reihe von Messwerten eine Polynomfunktion berechnen.
Ich habe z.B. 200 Messwerte und möchte ein Polynom 3.Ordnung .
Die in der Literatur beschriebenen Verfahren (Newton,Lagrange) gehen alle davon aus das ich bei 200 Messwerten ein Polynom 200ster Ordnung bekomme.
Ich möchte aber bei 200 Werten nur ein Polynom 3 Ordnung.
Kann mir da jemand einen Tip geben.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hi, minoss,
dann gibt's nur 2 Möglichkeiten:
1. Du suchst Dir eine Kurve 3. Grades, die "möglichst gut reinpasst", wobei mit Sicherheit die meisten Deiner 200 Punkte nicht genau draufliegen werden. Da musst Du halt ein bisschen rumprobieren.
Oder:
2. Du musst die Kurve "stückeln", d.h. aus Abschnitten von verschiedenen Kurven 3.Grades zusammensetzen und zwar so, dass die gesamte Kurve an den Stückelstellen stetig und differenzierbar ist ("kubische Interpolations-Spline"). Das ist natürlich viel aufwändiger, sodass Du hier am besten mit CAS arbeiten wirst.
|
|
|
|
|
Hallo Michael!
> Ich würde gerne für eine Reihe von Messwerten eine
> Polynomfunktion berechnen.
> Ich habe z.B. 200 Messwerte und möchte ein Polynom
> 3.Ordnung .
> Die in der Literatur beschriebenen Verfahren
> (Newton,Lagrange) gehen alle davon aus das ich bei 200
> Messwerten ein Polynom 200ster Ordnung bekomme.
> Ich möchte aber bei 200 Werten nur ein Polynom 3 Ordnung.
Ergänzend zur ersten Alternative von zwerglein möchte ich auf die Methode der kleinsten Quadrate hinweisen. Diese wählt die Koeffizienten a,b,c,d des Polynoms [mm] $f(x)=ax^3+bx^2+cx+d$ [/mm] so, dass die Summe der quadrierten Abweichungen
[mm] $\sum\limits_{i=1}^{200} (y_i-f(x_i))^2$
[/mm]
minimiert wird, wobei [mm] $(x_1,y_1),\ldots,(x_{200},y_{200})$ [/mm] Deine erwähnten Messwerte darstellen. Weiteres Stichwort dazu: nichtlineare Resgression bzw. Ausgleichsrechnung. Vielleicht schaust Du dazu noch mal in der Literatur.
Viele Grüße
Brigitte
|
|
|
|