Polynomring= komm. Ring mit 1 < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:58 Mo 28.03.2011 | Autor: | erisve |
Aufgabe | Beweise, dass ein Polynomring ein kommutativer Rin mit 1 ist. |
Hallo, eigentlich ist es ja ganz klar, dass obige Aussage stimmt.
Denn alle zu prüfenden Axiome gelten, nur wie kann ich jenes aufschreiben?
Ich weiß , dass ich prüfen muss:
(R(x),+) ist eine abelsche Gruppe
(R(x),*) ist eine Halbgruppe, die kommutativ ist
Mir ist klar, dass (R(x)) abelsch und kommutativ ist, reicht es einfach auf die Definition der Addition bei Polynomen zu verweisen?
Genauso wie zeige ich, dass die Multiplikation assoziativ und kommutativ ist?
Das Inverse und das neutrale Element zu + muss ich ja einfach nur angeben.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:19 Di 29.03.2011 | Autor: | Lippel |
Hallo,
> Beweise, dass ein Polynomring ein kommutativer Ring mit 1
> ist.
Es müsste noch vorausgesetzt werden, dass der Ring [mm] $R\:$, [/mm] über dem der Polynomring [mm] $R[x]\:$ [/mm] betrachtet wird, selbst kommutativ mit 1 ist, sonst stimmt die Aussage schon deshalb nicht, weil man [mm] $R\:$ [/mm] ja als Teilmenge von $R[x]$ betrachten kann.
> Hallo, eigentlich ist es ja ganz klar, dass obige Aussage
> stimmt.
> Denn alle zu prüfenden Axiome gelten, nur wie kann ich
> jenes aufschreiben?
> Ich weiß , dass ich prüfen muss:
> (R(x),+) ist eine abelsche Gruppe
> (R(x),*) ist eine Halbgruppe, die kommutativ ist
>
> Mir ist klar, dass (R(x)) abelsch und kommutativ ist,
> reicht es einfach auf die Definition der Addition bei
> Polynomen zu verweisen?
> Genauso wie zeige ich, dass die Multiplikation assoziativ
> und kommutativ ist?
> Das Inverse und das neutrale Element zu + muss ich ja
> einfach nur angeben.
Nehm dir einfach mal drei Elemente aus dem Polynomring, [mm] $f=\summe_{i=0}^l a_i x^i, g=\summe_{i=0}^m b_i x^i, h=\summe_{i=0}^n c_i x^i$ [/mm] wobei wir o.B.d.A. annehmen, dass $l [mm] \geq [/mm] m [mm] \geq [/mm] n$ gilt.
Mit diesen Elementen rechnest du die Eigenschaften nach, also zum Beispiel Kommutativität bzgl. der Addition:
$f+g= [mm] \summe_{i=0}^l a_i x^i [/mm] + [mm] \summe_{i=0}^m b_i x^i [/mm] = [mm] \summe_{i=0}^m (a_i [/mm] + [mm] b_i) [/mm] + [mm] \summe_{m+1}^l a_i x^i [/mm] = [mm] \summe_{i=0}^m (b_i [/mm] + [mm] a_i) [/mm] + [mm] \summe_{m+1}^l a_i x^i [/mm] = [mm] \summe_{i=0}^m b_i x^i [/mm] + [mm] \summe_{i=0}^l a_i x^i [/mm] = g+f$
usw.
Es ist ja wie du gesagt hast eigentlich klar, aber so kann man es nochmal kleinschrittig aufschreiben. Kannst dich ja jetzt mal an den anderen Eigenschaften probieren.
LG Lippel
|
|
|
|