www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraPolynomringe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Polynomringe
Polynomringe < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynomringe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:37 Mi 12.04.2006
Autor: ole

Aufgabe
Für Polynome f und g in K[X] schreiben wir g|f falls es ein Polynom h [mm] \in [/mm] K[X] gibt mit f = gh. In diesem Fall sagen wir "g teilt f".

Polynome [mm] p_{1}, [/mm] ...., [mm] p_{r} [/mm] in K[X] heißen teilerfremd falls aus [mm] g|p_{i} [/mm] für alle 1 [mm] \le [/mm] i [mm] \le [/mm] r immer g = 1 folgt. Zeige: [mm] p_{1},..., p_{r} [/mm] in K[X] teilerfremd. Dann gibt es [mm] q_{1},..., q_{r} [/mm] in K[X] mit [mm] p_{1}q_{1} [/mm] + .... + [mm] p_{r}q_{r} [/mm] = 1.  

Hallo!
Ich sitze gerad an diesem Beweis und habe leider überhaupt keine Ahnung, wie ich hier anfangen soll. Ich wäre euch echt dankbar für tolle Ideen!

Danke im voraus!

Ole

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Polynomringe: Antwort
Status: (Antwort) fertig Status 
Datum: 22:50 Mi 12.04.2006
Autor: felixf

Hallo!

> Für Polynome f und g in K[X] schreiben wir g|f falls es ein
> Polynom h [mm]\in[/mm] K[X] gibt mit f = gh. In diesem Fall sagen
> wir "g teilt f".
>
> Polynome [mm]p_{1},[/mm] ...., [mm]p_{r}[/mm] in K[X] heißen teilerfremd
> falls aus [mm]g|p_{i}[/mm] für alle 1 [mm]\le[/mm] i [mm]\le[/mm] r immer g = 1 folgt.

Das halte ich fuer ein Geruecht. Du meinst: '...immer $g [mm] \in [/mm] K$ folgt.'

> Zeige: [mm]p_{1},..., p_{r}[/mm] in K[X] teilerfremd. Dann gibt es
> [mm]q_{1},..., q_{r}[/mm] in K[X] mit [mm]p_{1}q_{1}[/mm] + .... + [mm]p_{r}q_{r}[/mm]
> = 1.
> Hallo!
>  Ich sitze gerad an diesem Beweis und habe leider überhaupt
> keine Ahnung, wie ich hier anfangen soll. Ich wäre euch
> echt dankbar für tolle Ideen!

Schau dir doch mal das von [mm] $p_1, \dots, p_r$ [/mm] erzeugte Ideal in $K[x]$ an. Kannst du was ueber das Aussehen von dem Ideal sagen ($K[x]$ ist ein ...ring)?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]