www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-FinanzmathematikPortfolio zweier Aktien
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Finanzmathematik" - Portfolio zweier Aktien
Portfolio zweier Aktien < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Portfolio zweier Aktien: negative Rendite
Status: (Frage) beantwortet Status 
Datum: 20:55 Mi 03.01.2007
Autor: TrendyAndy

Hi.

Angenommen man hat zwei Wertpapiere (beide riskant) und will den Fall von perfekter positiver Korrelation (also +1) untersuchen.
Um das verständlich zu machen hab ich hier einen link:
http://pauli.uni-muenster.de/~lemm/vorl_WS06/Vorl_WS06_Portfoliooptimierung.pdf

betrachte S. 24

Jetzt zu meiner Frage: wenn ich für eine Korrelation von +1 (Leerverkäufe natürlich erlaubt) ein Risiko von 0 hab und meine Rendite bei -0,5 liegt (also im negativen Bereich) ist dann die ganze Gerade bis zu diesem Punkt (also Risiko 0 und Rendite -0,5 ) effizient oder nur bis zu dem Punkt mit Rendite 0 und Risiko größer als 0 (also da wo die Risikoachse) geschnitten wird?

Es kommt mir auf die Effizienzkurve an!
Macht die negative Rendite Sinn?
Besten Dank.




        
Bezug
Portfolio zweier Aktien: Antwort
Status: (Antwort) fertig Status 
Datum: 12:57 Do 04.01.2007
Autor: VNV_Tommy

Hallo Andy!

> Jetzt zu meiner Frage: wenn ich für eine Korrelation von +1
> (Leerverkäufe natürlich erlaubt) ein Risiko von 0 hab und
> meine Rendite bei -0,5 liegt (also im negativen Bereich)
> ist dann die ganze Gerade bis zu diesem Punkt (also Risiko
> 0 und Rendite -0,5 ) effizient oder nur bis zu dem Punkt
> mit Rendite 0 und Risiko größer als 0 (also da wo die
> Risikoachse) geschnitten wird?

Zunächst einmal: Die Grafik ist ein wenig verwirrend - zugegeben: sie ist durch die verschiedenen Korrelationen umfangreich und auch schön bunt, allerdings sehr verwirrend. Besser ist die Darstellung auf Seite 23. Ich beziehe mich nun also auf die Grafik von S. 23.
Der [mm] \red{rote} [/mm] Punkt bedeutet, daß man ausschließlich Wertpapier 1 in seinem Portfolio hält. Der [mm] \blue{blaue} [/mm] Punkt hingegen beschreibt ein Portfolio, welches ausschliesslich aus Wertpapier 2 besteht. Die Gerade zwischen rotem und blauen Punkt beschreibt ein Portfolio bestehend aus Anlage 1 und Anlage 2. Die Teile der Geraden durch die beiden Punkte, welche über die Punkte hinausgehen bedeuten, daß man ein Portfolio mit mehr als 100 % aus Anlage 1 bzw. mehr als 100 % aus Anlage 2 bilden will.

Dort wo die Gerade die Risiko-Achse schneidet entsteht ein Portfolio, welches zwar ein Risiko [mm] (\sigma>0) [/mm] aber keine Rendite [mm] (\mu=0) [/mm] erwarten lässt.
Analog dazu kann man den Punkt auf der Renditeachse interpretieren. Dort hat man zwar kein Risiko vorliegen [mm] (\sigma=0) [/mm] allerdings wäre die Renditeerwartung bei diesem Portfolio negativ [mm] (\mu<0) [/mm] was bedeuten würde, daß man mit diesem Portfolio quasi Verlust machen würde. Würde sich ein rational handelnder Investor eines dieser beiden Portfolios (also entweder ein Portfolio welches Risiko, aber keine Rendite oder eines welches kein Risiko aber dafür eine negative Rendite hat) zulegen?

> Es kommt mir auf die Effizienzkurve an!

Die Effizienzkurve gibt die möglichen effizienten Portfolios an. Bei einer perfekt positiven Korrelation sind die effizienten Portfolios eben jene, welche sich aus 1 und 2 zusammensetzen und zusammen 100 % ergeben. Inwiefern nun anlage 1 und 2 miteinander kombiniert werden, hänt von der Risikoeinstellung des Investors (repräsentiert durch seine Indifferenzkuve) ab.

Gruß,
Tommy


Bezug
                
Bezug
Portfolio zweier Aktien: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:46 Do 04.01.2007
Autor: TrendyAndy

Hi.
Danke für die Antwort.

Dort wo die Gerade die Risiko-Achse schneidet entsteht ein Portfolio, welches zwar ein Risiko  von 0 aber keine Rendite  erwarten lässt.
Analog dazu kann man den Punkt auf der Renditeachse interpretieren. Dort hat man zwar kein Risiko vorliegen,  allerdings wäre die Renditeerwartung bei diesem Portfolio negativ,  was bedeuten würde, daß man mit diesem Portfolio quasi Verlust machen würde.
Würde sich ein rational handelnder Investor eines dieser beiden Portfolios (also entweder ein Portfolio welches Risiko, aber keine Rendite oder eines welches kein Risiko aber dafür eine negative Rendite hat) zulegen?
-Sicherlich nicht.
Nur ich hab da ein Satz in meinem Skript der heisst: die effizienten Portefeuilles liegen auf dem Geradenstück oberhalb des globalen varianzminimalen Portefeuilles.
Bsp.: Wertpapier 1: Rendite 6%, Risiko 8%
Wertpapier 2: Rendite 15%, Risiko 12%
Globale varianzminimale Portefeuilles ergibt sich bei einem Korrelationskoeffizienten von +1 zu Risiko = 0 und Rendite = -12%. Anteil an Wertpapier 1: 300% und Anteil an Wertpapier 2: -200%. Also ergibt wieder 100%. Wertpapier 2 wird also leer verkauft.
Also muss doch wenn ich von obigem Satz ausgeh alles über diesem Punkt mit Risiko 0 und Rendite von -12% effizient sein. Nur da tu ich mir schwer das zu begründen, warum das effizient ist.

Die Effizienzkurve gibt die möglichen effizienten Portfolios an. Bei einer perfekt positiven Korrelation sind die effizienten Portfolios eben jene, welche sich aus 1 und 2 zusammensetzen und zusammen 100 % ergeben. Inwiefern nun anlage 1 und 2 miteinander kombiniert werden, hänt von der Risikoeinstellung des Investors (repräsentiert durch seine Indifferenzkuve) ab.
- wenn ich mich dann aber auf Seite 23 beziehe und den Fall mit Korrelation +1 betrachte dann hätte ich gesagt, ist die ganze Gerade oberhalb des globalen varianzminimalen Portefeuilees effizient, vorausgesetzt Leerverkäufe sind gestattet. Mir steht keine Indifferenzkurve zur Verfügung (weiss also nicht ob der risikoscheu, risikoneutral oder risikofreudig ist). Der Investor könnte ja eine Kombination haben die sich aus einem negativen Anteil für Wertpapier 1 und einem positiven Anteil für Wertpapier 2 zusammensetzt oder umgekehrt.

Ciao Andy

Bezug
                        
Bezug
Portfolio zweier Aktien: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:09 Sa 06.01.2007
Autor: TrendyAndy

Hi.
Danke für die Antwort.

Dort wo die Gerade die Risiko-Achse schneidet entsteht ein Portfolio, welches zwar ein Risiko  von 0 aber keine Rendite  erwarten lässt.
Analog dazu kann man den Punkt auf der Renditeachse interpretieren. Dort hat man zwar kein Risiko vorliegen,  allerdings wäre die Renditeerwartung bei diesem Portfolio negativ,  was bedeuten würde, daß man mit diesem Portfolio quasi Verlust machen würde.
Würde sich ein rational handelnder Investor eines dieser beiden Portfolios (also entweder ein Portfolio welches Risiko, aber keine Rendite oder eines welches kein Risiko aber dafür eine negative Rendite hat) zulegen?
-Sicherlich nicht.
Nur ich hab da ein Satz in meinem Skript der heisst: die effizienten Portefeuilles liegen auf dem Geradenstück oberhalb des globalen varianzminimalen Portefeuilles.
Bsp.: Wertpapier 1: Rendite 6%, Risiko 8%
Wertpapier 2: Rendite 15%, Risiko 12%
Globale varianzminimale Portefeuilles ergibt sich bei einem Korrelationskoeffizienten von +1 zu Risiko = 0 und Rendite = -12%. Anteil an Wertpapier 1: 300% und Anteil an Wertpapier 2: -200%. Also ergibt wieder 100%. Wertpapier 2 wird also leer verkauft.
Also muss doch wenn ich von obigem Satz ausgeh alles über diesem Punkt mit Risiko 0 und Rendite von -12% effizient sein. Nur da tu ich mir schwer das zu begründen, warum das effizient ist.

Die Effizienzkurve gibt die möglichen effizienten Portfolios an. Bei einer perfekt positiven Korrelation sind die effizienten Portfolios eben jene, welche sich aus 1 und 2 zusammensetzen und zusammen 100 % ergeben. Inwiefern nun anlage 1 und 2 miteinander kombiniert werden, hänt von der Risikoeinstellung des Investors (repräsentiert durch seine Indifferenzkuve) ab.
- wenn ich mich dann aber auf Seite 23 beziehe und den Fall mit Korrelation +1 betrachte dann hätte ich gesagt, ist die ganze Gerade oberhalb des globalen varianzminimalen Portefeuilees effizient, vorausgesetzt Leerverkäufe sind gestattet. Mir steht keine Indifferenzkurve zur Verfügung (weiss also nicht ob der risikoscheu, risikoneutral oder risikofreudig ist). Der Investor könnte ja eine Kombination haben die sich aus einem negativen Anteil für Wertpapier 1 und einem positiven Anteil für Wertpapier 2 zusammensetzt oder umgekehrt.

Ciao Andy


Bezug
                                
Bezug
Portfolio zweier Aktien: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Di 09.01.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]