www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenPositive Invarianz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Positive Invarianz
Positive Invarianz < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Positive Invarianz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:32 Di 18.06.2013
Autor: Isabelle90

Hallo zusammen,

ich verzweifel gerade an folgender Aufgabe und habe garkeine Idee, wie ich sie lösen könnte. Gibt es hier vielleicht jemanden, der mir bei der Aufgabe weiterhelfen könnte.

Gegeben habe ich eine beschränkte [mm] C^1- [/mm] Abbildung [mm] {f}_0: \IR^n \to \IR^n [/mm]
b [mm] \in [/mm] Mat(n x n; [mm] \IR) [/mm] ist symmetrisch und negativ definit
f: [mm] \IR^n \to \IR^n, [/mm] x [mm] \mapsto f_0(x) [/mm] + Bx

Nun soll ich zeigen, dass es ein R > 0 derart gibt, dass [mm] \overline{K_r(0)} [/mm] = [mm] {x\in \IR^n, \parallel x \parallel_2 \le r} [/mm] für alle r [mm] \ge [/mm] R positiv invariant bezüglich [mm] \dot{x} [/mm] = f(x) ist.

Vielen Dank schonmal im Voraus für eure Hilfe!

Viele Grüße,
Isa

        
Bezug
Positive Invarianz: Antwort
Status: (Antwort) fertig Status 
Datum: 21:28 Di 18.06.2013
Autor: rainerS

Hallo Isa,

> Hallo zusammen,
>
> ich verzweifel gerade an folgender Aufgabe und habe
> garkeine Idee, wie ich sie lösen könnte. Gibt es hier
> vielleicht jemanden, der mir bei der Aufgabe weiterhelfen
> könnte.
>  
> Gegeben habe ich eine beschränkte [mm]C^1-[/mm] Abbildung [mm]{f}_0: \IR^n \to \IR^n[/mm]
>  
> [mm]b \in Mat(n x n; \IR)[/mm] ist symmetrisch und negativ definit
>  [mm]f: \IR^n \to \IR^n, x \mapsto f_0(x) + Bx[/mm]
>  
> Nun soll ich zeigen, dass es ein R > 0 derart gibt, dass
> [mm]\overline{K_r(0)}[/mm] = [mm]{x\in \IR^n, \| x \|_2 \le r}[/mm]
> für alle [mm]r \ge R[/mm] positiv invariant bezüglich [mm]\dot{x} = f(x)[/mm] ist.

Anschaulich heisst das doch, dass eine Lösung der DGL [mm]\dot{x} = f(x)[/mm], die an einem Randpunkt von [mm]\overline{K_r(0)}[/mm] losgeht, von dort nach innen läuft. Das könntest du als eine Aussage über das Skalarprodukt [mm] $\dot{x} [/mm] * x$ formulieren.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]