Potential Quadrupol < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
|
Aufgabe | Leiten Sie das Quadrupolpotential im Fernfeld
[mm] \phi_Q(\vec{r})=\bruch{3(\vec{r}\cdot\vec{d})(\vec{r}\cdot\vec{p})-|\vec{r}|^2(\vec{d}\cdot\vec{p})}{|\vec{r}|^5}
[/mm]
her, indem Sie sich den Quadrupol vorstellen als zusammengesetzt aus zwei antiparallelen Dipolen im Abstand d und eine Taylorentwicklung für d << r durchführen. |
Hallo,
die Taylorentwicklung haben wir in der Vorlesung für ein Dipolpotential gemacht, es ist mir soweit klar. Wie muss ich aber vorgehen wenn ich ein Quadrupol entwickeln will? Im Nolting ist das zwar gezeigt aber ich verstehe nicht warum er
[mm] \phi(\vec{r}) [/mm] = [mm] \vec{p}\cdot\nabla_r [/mm] ( [mm] \bruch{1}{r} [/mm] - [mm] \bruch{1}{|\vec{r}-\vec{d}|} [/mm] ) mit [mm] \vec{p} [/mm] = Dipolmoment verwendet.
Woher kommt der Nablaoperator?
Danke im Voraus
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:06 Mi 14.11.2012 | Autor: | notinX |
Hallo,
> Leiten Sie das Quadrupolpotential im Fernfeld
> [mm]\phi_Q(\vec{r})=\bruch{3(\vec{r}\cdot\vec{d})(\vec{r}\cdot\vec{p})-|\vec{r}|^2(\vec{d}\cdot\vec{p})}{|\vec{r}|^5}[/mm]
> her, indem Sie sich den Quadrupol vorstellen als
> zusammengesetzt aus zwei antiparallelen Dipolen im Abstand
> d und eine Taylorentwicklung für d << r durchführen.
> Hallo,
> die Taylorentwicklung haben wir in der Vorlesung für ein
> Dipolpotential gemacht, es ist mir soweit klar. Wie muss
> ich aber vorgehen wenn ich ein Quadrupol entwickeln will?
> Im Nolting ist das zwar gezeigt aber ich verstehe nicht
> warum er
> [mm]\phi(\vec{r})[/mm] = [mm]\vec{p}\cdot\nabla_r[/mm] ( [mm]\bruch{1}{r}[/mm] -
> [mm]\bruch{1}{|\vec{r}-\vec{d}|}[/mm] ) mit [mm]\vec{p}[/mm] = Dipolmoment
> verwendet.
> Woher kommt der Nablaoperator?
für das Dipolpotential gilt doch:
[mm] $\phi_D(\vec r)=\frac{\vec p\cdot\vec r}{4\pi\varepsilon_0 r^3}$
[/mm]
was man wegen [mm] $\nabla \frac{1}{r}=-\frac{\vec r}{r^3}$ [/mm] auch so schreiben kann:
[mm] $\phi_D(\vec r)=-\frac{1}{4\pi\varepsilon_0}\vec p\cdot\nabla \frac{1}{r}$
[/mm]
Daher der Nabla-Operator.
>
> Danke im Voraus
Gruß,
notinX
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:32 Mi 14.11.2012 | Autor: | helicopter |
Ahh, danke!!
|
|
|
|