www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenPotential von Vektorfelder
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Vektoren" - Potential von Vektorfelder
Potential von Vektorfelder < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potential von Vektorfelder: Korrektur
Status: (Frage) beantwortet Status 
Datum: 14:57 So 26.08.2012
Autor: derahnungslose

Aufgabe
Geben Sie ein Potential von g an.

g: [mm] \IR^2 \mapsto \IR^2 [/mm] : (x,y) [mm] \mapsto \pmat{ 2(-x-y-2) \\ 2(-x-y-2) } [/mm]

Hallo Leute,

ich komme mit der Aufgabe ganz gut klar, bloß eine Kleinigkeit stört mich. Vorweg, ich habe die Lösung vor mir (aber keinen Rechenweg). Ich habe die Aufgabe so angepackt:

1. Zeile nach x aufgeleitet:

[mm] -x^2-2yx-4x+C(y) [/mm]

Das abgeleitet nach y:

[mm] -2x+\partial/\partial(y) [/mm] c(y)=-2y-2x-4

d.h. ich muss -2y-4 aufleiten nach y

[mm] -y^2-4y+k [/mm]

Mein Ergebnis lautet also [mm] -x^2-2xy-4x-y^2-4y+k [/mm]

Die Musterlösung sagt: [mm] -x^2-2xy-4x-y^2-4y+4 [/mm]

wie komme ich auf die 4 da hinten? Und was ich noch komisch finde ist, dass ich ja mein Potential kontrolliert habe (Gradient) und da genau g raus gekommen ist. Also doch alles gut? Ich hoffe, man kann das einigermaßen nachvollziehen.

Vielen vielen Dank!

        
Bezug
Potential von Vektorfelder: Antwort
Status: (Antwort) fertig Status 
Datum: 15:09 So 26.08.2012
Autor: Richie1401

Hallo Ahnungsloser,

> Geben Sie ein Potential von g an.
>  
> g: [mm]\IR^2 \mapsto \IR^2[/mm] : (x,y) [mm]\mapsto \pmat{ 2(-x-y-2) \\ 2(-x-y-2) }[/mm]
>  
> Hallo Leute,
>  
> ich komme mit der Aufgabe ganz gut klar, bloß eine
> Kleinigkeit stört mich. Vorweg, ich habe die Lösung vor
> mir (aber keinen Rechenweg). Ich habe die Aufgabe so
> angepackt:
>  
> 1. Zeile nach x aufgeleitet:
>  
> [mm]-x^2-2yx-4x+C(y)[/mm]
>  
> Das abgeleitet nach y:
>  
> [mm]-2x+\partial/\partial(y)[/mm] c(y)=-2y-2x-4
>  
> d.h. ich muss -2y-4 aufleiten nach y
>  
> [mm]-y^2-4y+k[/mm]
>  
> Mein Ergebnis lautet also [mm]-x^2-2xy-4x-y^2-4y+k[/mm]

Der Weg ist auf jedenfall richtig.

>  
> Die Musterlösung sagt: [mm]-x^2-2xy-4x-y^2-4y+4[/mm]
>  
> wie komme ich auf die 4 da hinten?

gute Frage. In der Aufgabenstellung heißt es, man soll ein (!) Potential angeben. Ich nehme an, da haben die Aufgaben/Lösungsersteller einfach eine Zahl für das k eingesetzt. Du hast ja quasi alle Potentiale berechnet, wenn man bedenkt dass [mm] k\in\IR [/mm] ist.
Es heißt ja: "Das Potential ist bis auf eine Konstante eindeutig bestimmbar."

Deine Lösung ist aber keineswegs falsch.

Möglicherweise wurde ein anderes Lösungsverfahren benutzt. Es gibt da die wildesten Dinge.
Deine Lösungsvariante empfinde ich jedoch als die Beste und Einfachste.

> Und was ich noch komisch
> finde ist, dass ich ja mein Potential kontrolliert habe
> (Gradient) und da genau g raus gekommen ist. Also doch
> alles gut? Ich hoffe, man kann das einigermaßen
> nachvollziehen.
>  
> Vielen vielen Dank!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]