www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionPotenzgesetz beweisen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Induktion" - Potenzgesetz beweisen
Potenzgesetz beweisen < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzgesetz beweisen: Lösung richtig?
Status: (Frage) beantwortet Status 
Datum: 00:01 So 25.01.2009
Autor: ohmeinkreuz

Aufgabe
Zeige für alle: [mm] k,m,n,\in \IN [/mm] gilt [mm] (k^m)^n [/mm] = [mm] k^m^*^n [/mm]

Hallo! :)

Ich habe das Potenzgesetz folgendermaßen bewiesen:

[mm] (k^m)^n=\underbrace{k*k*k*...*k*k*k}_{m-mal}=k^m^*^n [/mm]
(unter der "Unterklammer" muss eigentlich noch eine sein die aussagt, dass das ganze n-mal genommen wird, aber das bekomm ich irgendwie nicht hin)

Man nimmt k n-mal m-mal mit sich selbst mal.

Reicht das als Beweis schon aus? Im Skript wurde das 1. Potenzgesetz per voll.Indu. bewiesen und das 3. in der Form wie ich es jetzt gemacht habe. Könnte ich es auch per voll. Indu. beweisen? Wirklich weit bin ich damit nämlich nicht gekommen.

Danke schonmal!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Potenzgesetz beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:34 So 25.01.2009
Autor: schachuzipus

Hallo ohmeinkreuz,

> Zeige für alle: [mm]k,m,n,\in \IN[/mm] gilt [mm](k^m)^n[/mm] = [mm]k^m^*^n[/mm]
>  Hallo! :)
>  
> Ich habe das Potenzgesetz folgendermaßen bewiesen:
>  
> [mm](k^m)^n=\underbrace{k*k*k*...*k*k*k}_{m-mal}=k^m^*^n[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  (unter der "Unterklammer" muss eigentlich noch eine sein
> die aussagt, dass das ganze n-mal genommen wird, aber das
> bekomm ich irgendwie nicht hin)
>  
> Man nimmt k n-mal m-mal mit sich selbst mal.
>  
> Reicht das als Beweis schon aus? Im Skript wurde das 1.
> Potenzgesetz per voll.Indu. bewiesen und das 3. in der Form
> wie ich es jetzt gemacht habe. Könnte ich es auch per voll.
> Indu. beweisen? Wirklich weit bin ich damit nämlich nicht
> gekommen.

Wenn du mit dem 1.Potenzgesetz das Gesetz $k^m\cdot{}k^n=k^{m+n}$ meinst, dann ja.

Das benötigst du im Induktionsschritt

Du nimmst dir m beliebig, aber fest und machst die Induktion über n

Der IA für n=1 (oder n=0) ist klar, oder?

Im Induktionsschritt $n\to n+1$ nimm in der Induktionsvoraussetzung an, dass für ein beliebiges, aber festes n\in\IN gilt $\red{\left(k^m\right)^n=k^{m\cdot{}n}$

Dann ist zu zeigen, dass $\left(k^m\right)^{n+1}=k^{m(n+1)}$ ist

Dann mal los: $\left(k^m\right)^{n+1}=\red{\left(k^m\right)^{n}}\cdot{}\left(k^m\right)^{1}$ nach dem 1.Potenzgesetz

$=\red{k^{m\cdot{}n}}\cdot{}k^m$ nach IV und IA $\left(k^m\right)^1=k^{m\cdot{}1}=k^m$

Nun nochmal das 1.Potenzgesetz anwenden und du bist fast am Ziel ...

>  
> Danke schonmal!
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


LG

schachuzipus

Bezug
                
Bezug
Potenzgesetz beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:25 So 25.01.2009
Autor: ohmeinkreuz

Ich hoffe ich habs verstanden! Mir scheint so. ;)

Ich habs mal so aufgeschrieben wie ichs aus der Uni kenn.

Für alle [mm] n\in\IN [/mm] sei p(n) [mm] ((k^m)^n=k^m^*^n \forall k,m,\in\IN) [/mm]

IA: Die Aussage ist für p(1) wahr
[mm] (k^m)^1=k^m^*^1 [/mm]
[mm] k^m=k^m [/mm]

IV: Angenommen, es gilt p(n) für ein beliebiges [mm] n\in\IN [/mm]

IS: z.zg: [mm] (k^m)^n^+^1= k^m^{(n+1)} [/mm]

[mm] (k^m)^n^+^1=(k^m)^n*(k^m)^1= [/mm] (nach IV und IA) [mm] k^m^*^n*k^m=k^m^{(n+1)} [/mm]

Stimmt das so??

Bezug
                        
Bezug
Potenzgesetz beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:32 So 25.01.2009
Autor: schachuzipus

Hallo nochmal,

> Ich hoffe ich habs verstanden! Mir scheint so. ;)
>
> Ich habs mal so aufgeschrieben wie ichs aus der Uni kenn.
>  
> Für alle [mm]n\in\IN[/mm] sei p(n) [mm]((k^m)^n=k^m^*^n \forall k,m,\in\IN)[/mm]
>  
> IA: Die Aussage ist für p(1) wahr
>  [mm](k^m)^1=k^m^*^1[/mm]
>  [mm]k^m=k^m[/mm]
>  
> IV: Angenommen, es gilt p(n) für ein beliebiges [mm]n\in\IN[/mm]
>  
> IS: z.zg: [mm](k^m)^n^+^1= k^m^{(n+1)}[/mm]
>  
> [mm](k^m)^n^+^1=(k^m)^n*(k^m)^1=[/mm] (nach IV und IA)
> [mm]k^m^*^n*k^m=k^m^{(n+1)}[/mm]
>  
> Stimmt das so??  

Ja, das ist so in Ordnung, spendiere noch die ein oder andere Begründung (zB. da, wo du das Gesetz [mm] $a^{r}\cdot{}a^s=a^{r+s}$ [/mm] verwendest.

Und bei der letzten und entscheidenden Umformung würde ich mind. einen Zwischenschritt machen ;-)

Gerade, wenn es eine Übungsaufgabe ist; das sehen die immer gerne ...

LG

schachuzipus


Bezug
                                
Bezug
Potenzgesetz beweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:45 So 25.01.2009
Autor: ohmeinkreuz


> Ja, das ist so in Ordnung, spendiere noch die ein oder
> andere Begründung (zB. da, wo du das Gesetz
> [mm]a^{r}\cdot{}a^s=a^{r+s}[/mm] verwendest.

Hab ich gemacht, wäre aber quatsch jetzt hier zu zeigen, da ich mich aufs Skript beziehe.

>  
> Und bei der letzten und entscheidenden Umformung würde ich
> mind. einen Zwischenschritt machen ;-)

MINDESTENS??? Oje...

>  
> Gerade, wenn es eine Übungsaufgabe ist; das sehen die immer
> gerne ...

Ich glaub eher, die sehn uns gerne bluten!!! Man schau nur mal auf die Uhr! ;)

> LG
>  
> schachuzipus
>  


Bezug
                                        
Bezug
Potenzgesetz beweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:02 So 25.01.2009
Autor: ohmeinkreuz

Ich komm nicht mal auf EINEN Zwischenschritt!

Wir haben folgende Def.

[mm] n^m^+^1 [/mm] := [mm] n^m*n \forall n,m\in\IN [/mm]

die würde ich zum Schluß anwenden.




Ich fall jetzt totmüde ins Bett. Morgen gehts weiter...


Bezug
                                                
Bezug
Potenzgesetz beweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:09 So 25.01.2009
Autor: schachuzipus

Hallo nochmal,

ich meinte dies:

Im letzten Umformungsscshritt: [mm] $k^m^\cdot{}^n\cdot{}k^m=k^m^{(n+1)}$ [/mm] würde ich dazwischenquetschen:

[mm] $k^m^\cdot{}^n\cdot{}k^m\red{=k^{m\cdot{}n+m}}=k^m^{(n+1)}$ [/mm]

Aber das musst du natürlich nicht ;-)

War nur ein Sicherheitstipp ,-)

[gutenacht]

schachuzipus

Bezug
                                                        
Bezug
Potenzgesetz beweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:53 So 25.01.2009
Autor: ohmeinkreuz

Ah! Ok.

Ich habe auf alle Fälle, und das ist schon mal ziemlich toll(!), die Schritte verstanden und kann alles nachvollziehen. Dafür DANKE!
Ich frage mich nur wie ich in der Klausur auf das alles von alleine, ohne Skript, kommen soll???

Viele Grüße - ohmeinkreuz (tut schon gar icht mehr so sehr weh ;-) )

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]