Potenzgesetze/Vereinfachen von < Klassen 8-10 < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 17:03 So 11.04.2010 | Autor: | Simon92 |
Aufgabe | [mm] \bruch{b^-^2}{(a-b)^2^n} [/mm] + [mm] \bruch{2-2a^2 * b^-^2}{(b-a)^2^n^+^2} [/mm] + [mm] \bruch{2b^-^1}{(a-b)^2^n^+^1} [/mm] |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Die Aufgabe lautet Vereinfachen sie soweit wie möglich. Die Ergebnisse sollen vollständig gekürzt sein und ohne Nenner geschrieben werden. Die Lösung ist vorgegeben, sie lautet -b^(-2)*(a+b)*(a-b)^(-2n-1)
Ich war bis jetzt nicht in der Lage, diese Lösung zu erreichen. Ich konnte auf einen gemeinsamen nennner bringen, konnte dort jedoch nicht weiter rechnen. Bitte um Lösungsweg.
Danke im Vorraus.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:12 So 11.04.2010 | Autor: | Blech |
Hi,
> Die Aufgabe lautet Vereinfachen sie soweit wie möglich.
> Die Ergebnisse sollen vollständig gekürzt sein und ohne
> Nenner geschrieben werden. Die Lösung ist vorgegeben, sie
> lautet -b^(-2)*(a+b)*(a-b)^(-2n-1)
>
> Ich war bis jetzt nicht in der Lage, diese Lösung zu
> erreichen. Ich konnte auf einen gemeinsamen nennner
> bringen, konnte dort jedoch nicht weiter rechnen. Bitte um
> Lösungsweg.
Den wirst Du nicht kriegen, weil wir hier keine Lösungsmaschine sind. Aber wenn Du uns Deine Rechnung zeigst, werden wir die gern korrigieren und Dir sagen, wie's dann weitergeht.
ciao
Stefan
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:53 So 11.04.2010 | Autor: | Simon92 |
ok, folgendes habe ich gerechnet :
[mm] \bruch{b^-^2*(a-b)^4^n^+^3+2(a-b)^4^n^+^1-2a^2b^-^2*(a-b)^4^n^+^1+2b^-^1*(a-b)^4^n^+^2}{(a-b)^6^n^+^3} [/mm]
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:08 So 11.04.2010 | Autor: | Simon92 |
ok, folgendes habe ich gerechnet :
$ [mm] \bruch{b^-^2\cdot{}(a-b)^4^n^+^3+2(a-b)^4^n^+^1-2a^2b^-^2\cdot{}(a-b)^4^n^+^1+2b^-^1\cdot{}(a-b)^4^n^+^2}{(a-b)^6^n^+^3} [/mm] $
|
|
|
|
|
Hallo!
Du erweiterst zuviel, dadurch kannst du nicht weiterrechnen.
Ausgangsterm:
[mm] $\frac{b^{-2}}{(a-b)^{2n}}+\frac{2-2*a^{2}*b^{-2}}{(b-a)^{2n+2}}+\frac{2*b^{-1}}{(a-b)^{2n+1}}$
[/mm]
Zuerst stellen wir fest: [mm] $(b-a)^{2n+2} [/mm] = [mm] (a-b)^{2n+2}$. [/mm] Warum?
Also:
$= [mm] \frac{b^{-2}}{(a-b)^{2n}}+\frac{2-2*a^{2}*b^{-2}}{(a-b)^{2n+2}}+\frac{2*b^{-1}}{(a-b)^{2n+1}}$
[/mm]
Der Hauptnenner ist [mm] $(a-b)^{2n+2}$ [/mm] ! Du siehst doch, das der völlig ausreicht! Durch Multiplikation von [mm] (a-b)^{2} [/mm] und (a-b) können die anderen beiden Nenner in den mittleren überführt werden.
$= [mm] \frac{b^{-2}*(a-b)^{2}}{(a-b)^{2n+2}}+\frac{2-2*a^{2}*b^{-2}}{(a-b)^{2n+2}}+\frac{2*b^{-1}*(a-b)}{(a-b)^{2n+2}}$
[/mm]
Nun bist du dran!
Grüße,
Stefan
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:27 So 11.04.2010 | Autor: | Simon92 |
ok, vielen dank dass wird helfen. Manchmal ist's so offensichtlich.....
|
|
|
|