www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNaive MengenlehrePotenzmengenbeweis
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Naive Mengenlehre" - Potenzmengenbeweis
Potenzmengenbeweis < naiv < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzmengenbeweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:45 Mi 31.10.2007
Autor: Narokath

Aufgabe
M sei eine Menge und [mm] 2^M [/mm] die
Potenzmenge von M. Beweisen Sie:
(a) 2^(M [mm] \cap [/mm] N) = [mm] 2^M \cap 2^N [/mm]

...

Hallo,

Ich hätte jetzt als Ansatz geschrieben:

2^(M [mm] \cap [/mm] N) = {x|(x [mm] \in [/mm] M  [mm] \wedge [/mm] x [mm] \in [/mm] N) [mm] \vee [/mm] x=M [mm] \vee [/mm] x = N [mm] \vee [/mm] x= [mm] \emptyset [/mm] }

und

dann
[mm] 2^M [/mm] = {x| x [mm] \in [/mm] M [mm] \vee [/mm] x=M [mm] \vee [/mm] x= [mm] \emptyset [/mm] }
[mm] 2^N [/mm] = {x|x [mm] \in [/mm] N [mm] \vee [/mm] x=N [mm] \vee [/mm] x= [mm] \emptyset [/mm] }

So meine Frage ist das ausreichend bzw überhaupt richtig? sonst wüsste ich nicht wie man es aufschreiben sollte

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Potenzmengenbeweis: Definition?
Status: (Antwort) fertig Status 
Datum: 11:58 Mi 31.10.2007
Autor: angela.h.b.


> M sei eine Menge und [mm]2^M[/mm] die
> Potenzmenge von M. Beweisen Sie:
>  (a) 2^(M [mm]\cap[/mm] N) = [mm]2^M \cap 2^N[/mm]
>  
> ...
>  Hallo,
>  
> Ich hätte jetzt als Ansatz geschrieben:
>  
> 2^(M [mm]\cap[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

N) = {x|(x [mm]\in[/mm] M  [mm]\wedge[/mm] x [mm]\in[/mm] N) [mm]\vee[/mm] x=M [mm]\vee[/mm] x

> = N [mm]\vee[/mm] x= [mm]\emptyset[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

}


Hallo,

bevor Du irgendetwas tust, benötigst Du die exakte Definition der Potenzmenge.

Wenn Du die hast, solltest Du sie auf 2^(M [mm]\cap[/mm] N)  übertragen, und dann mal in Worten formulieren, was die Elemente dieser Menge sind.

Dieser Prozeß ist ziemlich wichtig, denn wenn einem das Material nicht ganz klar ist, mit welchem man hantiert, ist's schwierig, das richtige Werkzeug zu finden. (Für meinen Becher Sahne nehme ich eine Schüssel und meinen Mixer und nicht den Betonmischer von gegenüber.)

Wenn das geklärt ist geht's so weiter wie immer, wenn die Gleichheit von Mengen zu zeigen ist.

Du mußt Zeigen, daß
1. jedes Element von 2^(M $ [mm] \cap [/mm] $ N) auch in  $ [mm] 2^M \cap 2^N [/mm] $ liegt und
2. jedes Element von [mm] 2^M \cap 2^N [/mm] auch in 2^(M $ [mm] \cap [/mm] $ N) liegt.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]