www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenPotenzreihe Taylorreihe tanh
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Potenzreihe Taylorreihe tanh
Potenzreihe Taylorreihe tanh < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihe Taylorreihe tanh: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:10 Do 07.05.2009
Autor: Denny22

Hallo,

ich muss eine Potenzreihenentwicklung fuer die Funktion

     [mm] $\mathrm{tanh}(x)$ [/mm] mit [mm] $x\in\IR$ [/mm]

zu einem beliebigen Entwicklungspunkt [mm] $x_0\in\IR$ [/mm] berechnen. Wie mache ich das? Dazu werden die $n$-ten Ableitungen dieser Funktion benoetigt, die die Bernoulli-Zahlen und Euler-Zahlen enthalten. Wie berechne ich diese, oder wo kann ich es nachlesen? Anschliessend muss ich den Konvergenzradius in jedem beliebigen Punkt berechnen, was dann hoffentlich nicht das Problem sein sollte.

Danke und Gruss

        
Bezug
Potenzreihe Taylorreihe tanh: Antwort
Status: (Antwort) fertig Status 
Datum: 19:13 Fr 08.05.2009
Autor: Martinius

Hallo,

[guckstduhier]


[]http://de.wikipedia.org/wiki/Tangens_Hyperbolicus_und_Kotangens_Hyperbolicus


LG, Martinius

Bezug
                
Bezug
Potenzreihe Taylorreihe tanh: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:13 Mo 11.05.2009
Autor: Denny22

Hallo,

danke für die Antwort. Die Ableitungen kann ich nun per Induktion herleiten.

Wie aber bestimme ich den Konvergenzradius der Potenzreihe von [mm] $\tanh$ [/mm] in einem beliebigen Entwicklungspunkt [mm] $z_0\in\IC$? [/mm] Da [mm] $\tanh$ [/mm] in den Punkten [mm] $\pm\frac{\pi i}{2}$ [/mm] Singularitäten besitzt, muss der Konvergenzradius irgendwie
     [mm] $\rho=\max\{|z_0-\frac{\pi i}{2}|,|z_0+\frac{\pi i}{2}|\}$ [/mm]
sein. Aber wie komme ich darauf?

Danke und Gruß

Bezug
                        
Bezug
Potenzreihe Taylorreihe tanh: Antwort
Status: (Antwort) fertig Status 
Datum: 00:52 Di 12.05.2009
Autor: leduart

Hallo denny
im ersten post ist von tanh(x) x [mm] \in \IR [/mm] die rede. jetzt auf einmal z? Was ist jetzt die Aufgabe
Gruss leduart

Bezug
                                
Bezug
Potenzreihe Taylorreihe tanh: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:10 Di 12.05.2009
Autor: Denny22

Hallo,

ich meine natuerlich [mm] $x\in\IR$. [/mm] Sorry! Die exakte Aufgabe lautet:

Zeigen Sie, dass [mm] $\tanh(x):=\frac{e^{2x}-1}{e^{-2x}+1}$ [/mm] auf [mm] $\IR$ [/mm] reell-analytisch ist und bestimmen Sie den Konvergenzradius ihrer Taylorreihe um jeden beliebigen Punkt [mm] $x_0\in\IR$. [/mm]

"reell-analytisch in [mm] $x_0$" [/mm] bedeutet meines Wissens nach, dass wir diese Funktion in eine konvergente Potenzreihe um [mm] $x_0$ [/mm] entwickeln koennen.

Meine Idee:

1. Potenzreihe mit Entwicklungspunkt [mm] $x_0$ [/mm] herleiten
     [mm] $\sum_{n=0}^{\infty}a_n(x-x_0)^{n}$ [/mm]
wobei
     [mm] $a_n=\frac{\tanh^{(n)}(x_0)}{n!}$ [/mm]
Dazu muessen wir per Induktion die Ableitungen von [mm] $\tanh(x)$ [/mm] berechnen. ($E(n,k)$ Eulersche Zahlen)
     [mm] $\tanh^{(n)}(x_0)=\frac{2^{n+1}e^{2x_0}}{(1+e^{2x_0})^{n+1}}\cdot\sum_{k=0}^{n-1}E(n,k)\cdot(-1)^k\cdot e^{2kx_0}$ [/mm]
Zum Beispiel erhalten wir im Entwicklungspunkt [mm] $x_0=0$ [/mm] die Potenzreihe [mm] ($B_{2n}$ [/mm] Bernoulli Zahlen)
     [mm] $\tanh(x)=\sum_{n=1}^{\infty}\frac{2^{2n}(2^{2n}-1)}{(2n)!}\cdot B_{2n}\cdot x^{2n-1}$ [/mm]
2. Die Konvergenzradien [mm] $\rho$ [/mm] mithilfe der Quotientenformel bestimmen: Da [mm] $\tanh(x)$ [/mm] (im Komplexen betrachtet) in den Punkten [mm] $\pm\frac{\pi i}{2}$ [/mm] Singularitaeten besitzt (und nur dort!), muesste ich als Konvergenzradius folgendes erhalten:
     $ [mm] \rho=\max\{|x_0-\frac{\pi i}{2}|,|x_0+\frac{\pi i}{2}|\} [/mm] $

Ist diese Vorgehensweise richtig? Gibt es auch einen anderen Weg diese Aufgabe zu loesen?

Danke und Gruss

Bezug
                                        
Bezug
Potenzreihe Taylorreihe tanh: Antwort
Status: (Antwort) fertig Status 
Datum: 13:20 Di 12.05.2009
Autor: leduart

Hallo
in deiner Reihe fehlt ein [mm] (-1)^{n-1} [/mm] und es ist [mm] B_n [/mm] nicht [mm] B_{2n} [/mm]
Mit dem Rest hast du Recht.
einen einfacheren Weg fuer den Konvradius seh ich nicht, lass aber die frage auf halb offen.
Gruss leduart

Bezug
                                        
Bezug
Potenzreihe Taylorreihe tanh: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Sa 16.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]