www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenPotenzreihe bestimmen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Komplexe Zahlen" - Potenzreihe bestimmen
Potenzreihe bestimmen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihe bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:07 So 05.06.2011
Autor: Kaese

Aufgabe
Geben Sie eine Potenzreihe um i mit Konvergenzradius 2 an, die in i+2 konvergiert und in -i divergiert.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Erstmal ein Hallo an alle,
ich bin zwar in der Lage den Konvergenzradius einer Potenzreihe zu bestimmen. Wie ich die Aufgabe aber verstehe muss man hier wohl "von hinten" anfangen. Da Mathematik nicht zu meinen Stärken gehört, habe ich mich in diesem Forum angemeldet, um wenigstens einen kleinen Tipp zu bekommen. Auf welchem Weg komme ich von dem Konvergenzradius 2 auf die Potezreihe. Wäre nett wenn mir jemand einen Tipp geben könnte.

        
Bezug
Potenzreihe bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:22 So 05.06.2011
Autor: al3pou

Also du kannst ja erstmal überlegen, wie die allgemeine Formel für die Potenzreihe aussieht. Dann kannst du einsetzen, was du hast (den Entwicklungspunkt). Anschließend würde ich mir noch eine Folge suchen, die einen Konvergenzradius von 2 hat.

LG

Bezug
                
Bezug
Potenzreihe bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:23 Mo 06.06.2011
Autor: Kaese

Ich danke für die Antwort und führe mal fort:).
Im Allgemeinen sieht eine Potenzreihe ja in etwa so aus:
[mm] \summe_{i=0}^{n}a_{n}(x-x_{0})^{n} [/mm]
Ist hier mit dem Entwicklungspunkt das [mm] x_{0} [/mm] gemeint und in meinem Fall das "i"?
Und bezüglich des Konvergenzradius von 2:
Die Formel ist :
[mm] R=\limes_{n\rightarrow\infty}Betrag(\bruch{a_{n}}{a_{n+1}}) [/mm]
Kann man hier eine beliebige Folge wählen Hauptsache ihr Konvergenzradius ist 2?
Dann kommt ja auch noch die Divergenz/Konvergenz hinzu. Wie kriege ich das denn alles vereint?

Bezug
                        
Bezug
Potenzreihe bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:30 Mo 06.06.2011
Autor: al3pou


> Ich danke für die Antwort und führe mal fort:).
>  Im Allgemeinen sieht eine Potenzreihe ja in etwa so aus:
>  [mm]\summe_{i=0}^{n}a_{n}(x-x_{0})^{n}[/mm]
>  Ist hier mit dem Entwicklungspunkt das [mm]x_{0}[/mm] gemeint und
> in meinem Fall das "i"?

[ok]  

>  Und bezüglich des Konvergenzradius von 2:
>  Die Formel ist :
>  
> [mm]R=\limes_{n\rightarrow\infty}Betrag(\bruch{a_{n}}{a_{n+1}})[/mm]
>  Kann man hier eine beliebige Folge wählen Hauptsache ihr
> Konvergenzradius ist 2?

[ok]

>  Dann kommt ja auch noch die Divergenz/Konvergenz hinzu.
> Wie kriege ich das denn alles vereint?

Überleg mal, was der Konvergenzradius bedeutet? Was gilt innerhalb bzw außerhalb des Konvergenzintervalls?

LG

Bezug
                                
Bezug
Potenzreihe bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:19 Mo 06.06.2011
Autor: Kaese

Ich gehe davon aus, dass im Konvergenzradius die Reihe konvergiert.
Jetzt steht hier ja der Radius soll 2 sein und in i+2 konvergieren. Wenn ich den Betrag von i+2 ausrechne, dann habe ich [mm] r=\wurzel{5} [/mm] und das ist größer als der Konvergenzradius. Ist das denn möglich oder ist hier ein Denkfehler drin?

Bezug
                                        
Bezug
Potenzreihe bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:32 Mo 06.06.2011
Autor: Kaese

Weiß nicht, ob man das auch so sehen kann/darf:
Wenn ich das jetzt im Koordinatensystem betrachte und der Entwicklungspunkt i ist 1 auf der Imaginärachse, dann würde die Reihe in i+2 noch konvergieren (da es ja genau um den Radius 2 nach rechts verschoben ist) aber dann ja auch in -i,da das ja dann auch genau 2 vom Entwicklungspunkt entfernt ist. Die Aufgabe hat mich nun vollkommen verwirrt.

Bezug
                                        
Bezug
Potenzreihe bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:45 Mo 06.06.2011
Autor: kamaleonti

Moin Kaese,

    [willkommenmr]!

> Ich gehe davon aus, dass im Konvergenzradius die Reihe
> konvergiert.
>  Jetzt steht hier ja der Radius soll 2 sein und in i+2
> konvergieren. Wenn ich den Betrag von i+2 ausrechne, dann
> habe ich [mm]r=\wurzel{5}[/mm] und das ist größer als der
> Konvergenzradius. Ist das denn möglich oder ist hier ein
> Denkfehler drin?

Hier hast du den Abstand von (2+i) zu 0 in der gaußschen Zahlenebene berechnet. Wenn du also eine Reihe mit Konvergenzradius 2 im Entwicklungspunkt [mm] x_0=2+i [/mm] hast, wird die Reihe im Punkt 0 nicht konvergieren, denn [mm] \sqrt{5}>2. [/mm]


Der Abstand von -i und (2+i) bzgl. der euklidischen Metrik ist ebenfalls größer 2. Daher kannst du, wie bereits angedeutet wurde, eine beliebige Reihe mit Konvergenzradius 2 wählen und diese im Entwicklungspunkt [mm] x_0=2+i [/mm] betrachten.


Schau mal, was du aus der Folge [mm] a_n=\frac{1}{2^n} [/mm] machen kannst.

LG

Bezug
                                                
Bezug
Potenzreihe bestimmen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:03 Mo 06.06.2011
Autor: Kaese

Hieß es in den vorigen Antworten nicht der Entwicklungspunkt sei "i", nicht "i+2"?

Bezug
                                                        
Bezug
Potenzreihe bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:33 Mo 06.06.2011
Autor: kamaleonti


> Hieß es in den vorigen Antworten nicht der
> Entwicklungspunkt sei "i", nicht "i+2"?

Tut mir leid, verlesen...

Das macht die Aufgabe deutlich schwieriger. Ich hab jetzt auf die Schnelle keine passende Potenzreihe gefunden (eine beliebige geht dann nicht, denn -i und 2+i liegen beide auf dem Kreis mit Radius 2 um den geforderten Entwicklungspunkt i).
Ich werde mich später nochmal damit beschäftigen, muss jetzt aber erstmal los.

LG

Bezug
                                                                
Bezug
Potenzreihe bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:38 Mo 06.06.2011
Autor: Kaese

OKay danke;)

Bezug
                                                        
Bezug
Potenzreihe bestimmen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:23 Di 07.06.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                                                
Bezug
Potenzreihe bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:23 Mo 06.06.2011
Autor: Kaese

An (1/2)² hab ich wegen dem Radius auch gedacht. Wie ich die Aufgabe verstanden hab, sollte das "i" der Mittelpunkt des Kreises sein. Wenn das nicht der Fall ist (steht ja nicht direkt drin), könnte man doch [mm] \summe_{i=0}^{\infty}\bruch{1}{2^{n}}(x-(2+i))^{n} [/mm] schreiben?

Bezug
        
Bezug
Potenzreihe bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:07 Mo 06.06.2011
Autor: Kaese

Hat gegebenenfalls noch jemand eine Idee?^^

Bezug
        
Bezug
Potenzreihe bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:10 Di 07.06.2011
Autor: Kaese

Auch wenn die Lösung meines Problems jetzt wohl zu spät kommt, bin ich trotzdem am Rechenweg interessiert;)

Bezug
                
Bezug
Potenzreihe bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:31 Di 07.06.2011
Autor: kamaleonti


> Auch wenn die Lösung meines Problems jetzt wohl zu spät
> kommt, bin ich trotzdem am Rechenweg interessiert;)

Ich habe etwas konstruiert, das zunächst etwas kompliziert anmutet:

Sei [mm] t_n:=1/n [/mm] für [mm] n\equiv1,2 [/mm] mod(2) und [mm] t_n:=-1/n [/mm] für [mm] n\equiv0,3 [/mm] mod(2).
Also [mm] t_n=1/1, [/mm] 1/2, -1/3, -1/4,1/5,...

Offenbar hat die Potenzreihe [mm] \sum_{n=1}^\infty\frac{t_n}{2^n}(x-i)^n [/mm] Konvergenzradius 2.

Nun gilt es zwei kritische Stellen auszuwerten. Im Punkt x=2+i ist

     [mm] \sum_{n=1}^\infty\frac{t_n}{2^n}(x-i)^n=\sum_{n=1}^\infty\frac{t_n}{2^n}2^n =\sum_{n=1}^\infty t_n [/mm]

Hier folgt Konvergenz in Analogie zum Leibnizkriterium.

Im Punkt x=-i ist

     [mm] \sum_{n=1}^\infty\frac{t_n}{2^n}(x-i)^n=\sum_{n=1}^\infty\frac{t_n}{2^n}(-2i)^n =\sum_{n=1}^\infty t_n(-i)^n=:\sum_{n=1}^\infty u_n, [/mm]

wobei [mm] u_n=\frac{-1}{n} [/mm] für n gerade und [mm] u_n=\frac{-i}{n} [/mm] für n ungerade
Für diese Reihe folgt also Divergenz in Analogie zur Divergenz der harmonischen Reihe.

Ich bin mir nicht sicher, ob sich hier viel einfachere Beispiele konstruieren lassen.

LG

Bezug
                        
Bezug
Potenzreihe bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:37 Mi 08.06.2011
Autor: Kaese

Wirkt wirklich recht kompliziert^^.
Danke für deine Bemühungen. Werd mich wohl demnächst nochmal damit beschäftigen.
Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]