www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenPotenzreihe erstellen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Potenzreihe erstellen
Potenzreihe erstellen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihe erstellen: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:34 Do 02.01.2014
Autor: Bindl

Aufgabe
Geben Sie eine Potenzreihe um -2 mit Konvergenzradius 3 an, die in 1 konvergiert und in -5 divergiert & belegen Sie ihre Behauptung.

Hi,

ich habe eine Ansatz, jedoch nur einen ganz "kleinen".
[mm] \summe_{n=0}^{\infty} a_n [/mm] (x+2)
dann habe ich [mm] x_0 [/mm] = -2, "um -2"

Jetzt muss ich eine Reihe erstellen die bei 1/Wurzelkriterium = 3 ergibt.
Da habe ich jedoch mein großes Problem. Ich komm nicht wirklich auf eine.
Hatte eine "kleine" Idee:
[mm] a_n [/mm] = [mm] 3^{-n} [/mm]
Dann hätte ich [mm] \bruch{1}{\wurzel[n]{3^{-n}}} [/mm] = [mm] \bruch{1}{3^{-1}} [/mm] = 3

Dann berechne ich die x Werte:
[mm] x_1 [/mm] : [mm] x_0 [/mm] + r = -2 + 3 = 1
[mm] x_2 [/mm] : [mm] x_0 [/mm] - r = -2 - 3 = -5

einsetzen in die Reihe:
für [mm] x_1 [/mm] : [mm] \summe_{n=0}^{\infty} \bruch{3}{3^n} [/mm]
für [mm] x_1 [/mm] : [mm] \summe_{n=0}^{\infty} \bruch{-3}{3^n} [/mm]

Und wenn mich nicht alles täuscht konvergieren diese beiden Reihen.

Also denke ich mal das meine Reihe falsch ist.

        
Bezug
Potenzreihe erstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:04 Do 02.01.2014
Autor: schachuzipus

Hallo,

> Geben Sie eine Potenzreihe um -2 mit Konvergenzradius 3 an,
> die in 1 konvergiert und in -5 divergiert & belegen Sie
> ihre Behauptung.
> Hi,

>

> ich habe eine Ansatz, jedoch nur einen ganz "kleinen".
> [mm]\summe_{n=0}^{\infty} a_n[/mm] (x+2)

Das muss doch wohl [mm] $\sum\limits_{n\ge 0}a_n(x+2)^{\red n}$ [/mm] lauten ...

> dann habe ich [mm]x_0[/mm] = -2, "um -2"

>

> Jetzt muss ich eine Reihe erstellen die bei
> 1/Wurzelkriterium = 3 ergibt.
> Da habe ich jedoch mein großes Problem. Ich komm nicht
> wirklich auf eine.
> Hatte eine "kleine" Idee:
> [mm]a_n[/mm] = [mm]3^{-n}[/mm]
> Dann hätte ich [mm]\bruch{1}{\wurzel[n]{3^{-n}}}[/mm] =
> [mm]\bruch{1}{3^{-1}}[/mm] = 3

>

> Dann berechne ich die x Werte:
> [mm]x_1[/mm] : [mm]x_0[/mm] + r = -2 + 3 = 1
> [mm]x_2[/mm] : [mm]x_0[/mm] - r = -2 - 3 = -5

>

> einsetzen in die Reihe:
> für [mm]x_1[/mm] : [mm]\summe_{n=0}^{\infty} \bruch{3}{3^n}[/mm]
> für [mm]x_1[/mm]
> : [mm]\summe_{n=0}^{\infty} \bruch{-3}{3^n}[/mm]

>

> Und wenn mich nicht alles täuscht konvergieren diese
> beiden Reihen.

>

> Also denke ich mal das meine Reihe falsch ist.

Das ist wahr, so passt es nicht.

Einen schematischen Weg habe ich gerade nicht parat, aber du kannst dich an der Reihe aus deiner anderen Aufgabe orientieren.

Wenn du daran etwas rumbastelst, kommst du schnell auf das Gewünschte ...


Beachte, dass du hier (im Hinblick auf die andere Aufgabe) die Konvergenz/Divergenz an den Intervallrändern durch Multiplikation von [mm] $a_n$ [/mm] mit [mm] $(-1)^n$ [/mm] vertauschen kannst ...

Gruß

schachuzipus

Bezug
                
Bezug
Potenzreihe erstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:09 Do 02.01.2014
Autor: schachuzipus

Hallo nochmal,

> Hallo,

>

> > Geben Sie eine Potenzreihe um -2 mit Konvergenzradius 3
> an,
> > die in 1 konvergiert und in -5 divergiert & belegen Sie
> > ihre Behauptung.
> > Hi,
> >
> > ich habe eine Ansatz, jedoch nur einen ganz "kleinen".
> > [mm]\summe_{n=0}^{\infty} a_n[/mm] (x+2)

>

> Das muss doch wohl [mm]\sum\limits_{n\ge 0}a_n(x+2)^{\red n}[/mm]
> lauten ...

>

> > dann habe ich [mm]x_0[/mm] = -2, "um -2"
> >
> > Jetzt muss ich eine Reihe erstellen die bei
> > 1/Wurzelkriterium = 3 ergibt.
> > Da habe ich jedoch mein großes Problem. Ich komm nicht
> > wirklich auf eine.
> > Hatte eine "kleine" Idee:
> > [mm]a_n[/mm] = [mm]3^{-n}[/mm]
> > Dann hätte ich [mm]\bruch{1}{\wurzel[n]{3^{-n}}}[/mm] =
> > [mm]\bruch{1}{3^{-1}}[/mm] = 3
> >
> > Dann berechne ich die x Werte:
> > [mm]x_1[/mm] : [mm]x_0[/mm] + r = -2 + 3 = 1
> > [mm]x_2[/mm] : [mm]x_0[/mm] - r = -2 - 3 = -5
> >
> > einsetzen in die Reihe:
> > für [mm]x_1[/mm] : [mm]\summe_{n=0}^{\infty} \bruch{3}{3^n}[/mm]
> > für
> [mm]x_1[/mm]
> > : [mm]\summe_{n=0}^{\infty} \bruch{-3}{3^n}[/mm]
> >
> > Und wenn mich nicht alles täuscht konvergieren diese
> > beiden Reihen.
> >
> > Also denke ich mal das meine Reihe falsch ist.

Die Idee mit [mm] $\frac{1}{3^n}$ [/mm] ist gar nicht übel.

Du kannst eine passende Reihe so hinbasteln, dass du an der einen Intervallgrenze die harmonische Reihe (bzw. eine Variante derselben) (divergent) bekommst und am anderen Ende eben eine alternierende harmonische Reihe (konvergent).

Damit ist es gar nicht so schwierig ...

Probier mal ein bisschen rum ..

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]