www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenPotenzreihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Potenzreihen
Potenzreihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihen: Quotientenkriterium (Euler)
Status: (Frage) beantwortet Status 
Datum: 20:17 Fr 05.05.2006
Autor: beutelsbacher

Hallo zusammen,
ich hab derzeit denk ich nur ein Brett vorm Kopf, vielleicht kann mir ja jemand von euch helfen:
es geht um das Quotientenkriterium von Euler bei Potenzreihen. Wieso kann man das nicht z.B. auf die Potenzreihenentwicklung der Sinus-Funktion anwenden?? Es heißt dabei, dass jeder zweite Koeffizient gleich 0 ist.
Aber ist nicht sin(z):= [mm] \summe_{i=0}^{\infty} \bruch{(-1)^{i}}{(2i+1)!}*z^{2i+1} [/mm] ???
Dann sind doch die Koeffizienten [mm] a_{i}= \bruch{(-1)^{i}}{(2i+1)!} [/mm]
bzw.  [mm] a_{2i}= \bruch{(-1)^{2i}}{(4i+1)!} [/mm] ...
Aber das ist doch  [mm] \not= [/mm] 0 . Also lässt sich doch das Kriterium anwenden, oder nicht??
Danke schonmal für Eure Hilfe


        
Bezug
Potenzreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:20 Fr 05.05.2006
Autor: felixf

Hallo!

>  ich hab derzeit denk ich nur ein Brett vorm Kopf,
> vielleicht kann mir ja jemand von euch helfen:
>  es geht um das Quotientenkriterium von Euler bei
> Potenzreihen. Wieso kann man das nicht z.B. auf die
> Potenzreihenentwicklung der Sinus-Funktion anwenden?? Es
> heißt dabei, dass jeder zweite Koeffizient gleich 0 ist.
>  Aber ist nicht sin(z):= [mm]\summe_{i=0}^{\infty} \bruch{(-1)^{i}}{(2i+1)!}*z^{2i+1}[/mm]
> ???
>  Dann sind doch die Koeffizienten [mm]a_{i}= \bruch{(-1)^{i}}{(2i+1)!}[/mm]
> bzw.  [mm]a_{2i}= \bruch{(-1)^{2i}}{(4i+1)!}[/mm] ...

Na, aber [mm] $a_i$ [/mm] ist hier nicht der Koeffizient von [mm] $z^i$! [/mm] Und das ist die Voraussetzung fuer das Kriterium!

LG Felix


Bezug
                
Bezug
Potenzreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:24 Fr 05.05.2006
Autor: beutelsbacher

Danke schonmal für die schnelle Antwort,
so versteh ich das auch.
Unser Dozent meinte allerdings, dass es daran liegt, dass jeder zweite Koeffizient gleich 0 ist. Das kann ich irgendwie nicht nachvollziehen...

Bezug
                        
Bezug
Potenzreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:29 Fr 05.05.2006
Autor: felixf

Hallo!

> Danke schonmal für die schnelle Antwort,
>  so versteh ich das auch.
>  Unser Dozent meinte allerdings, dass es daran liegt, dass
> jeder zweite Koeffizient gleich 0 ist. Das kann ich
> irgendwie nicht nachvollziehen...

Ja, ist ja auch so. Die Koeffizienten von [mm] $z^{2 i + 1}$ [/mm] sind [mm] $\neq [/mm] 0$, die von [mm] $z^{2 i}$ [/mm] sind $= 0$! Also ist jeder zweite Koeffizient gleich 0.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]