www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisPotenzreihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Potenzreihen
Potenzreihen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihen: Beweis asureichend?
Status: (Frage) beantwortet Status 
Datum: 11:47 Di 07.12.2010
Autor: BarneyS

Aufgabe
Zeigen Sie für komlpexe Argumente die Beziehung:
[mm]cosh(ix) = cos(x)[/mm]

Hallo,

meine Frage:
Wenn gegeben ist, dass

[mm] cosh(x) = \bruch{exp(x) + exp(-x)}{2}[/mm]

und man gezeigt hat, dass

[mm]e^{ix} = cos(x) + i*sin(x)[/mm]

kann man die Behauptung dann so beweisen:

[mm]cosh(ix) = \bruch{cos(x) + i*sin(x) + cos(x)-i*sin(x)}{2}=cos(x)[/mm]  ?

Oder muss man die Summen komplett aufdröseln und die Terme so neu zusammenfassen, dass man die Behauptung zeigen kann?

thx
Barney

        
Bezug
Potenzreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:53 Di 07.12.2010
Autor: statler


> Zeigen Sie für komlpexe Argumente die Beziehung:
>  [mm]cosh(ix) = cos(x)[/mm]

Mahlzeit!

>  Wenn gegeben ist, dass
>  
> [mm]cosh(x) = \bruch{exp(x) + exp(-x)}{2}[/mm]
>  
> und man gezeigt hat, dass
>  
> [mm]e^{ix} = cos(x) + i*sin(x)[/mm]
>  
> kann man die Behauptung dann so beweisen:
>  
> [mm]cosh(ix) = \bruch{cos(x) + i*sin(x) + cos(x)-i*sin(x)}{2}=cos(x)[/mm]
>  ?

Naja, vielleicht sollte man auch noch einwerfen, daß sin(-x) = -sin(x) und cos(-x) = cos(x) ist, aber dann ist das nach meinem Geschmack OK.

Gruß aus HH-Harburg
Dieter

Bezug
                
Bezug
Potenzreihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:03 Di 07.12.2010
Autor: BarneyS

stimmt, so passt es!

Dankeschön

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]