www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenPotenzreihenansatz
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Potenzreihenansatz
Potenzreihenansatz < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihenansatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:55 So 20.12.2009
Autor: pandabaer

Aufgabe
Lösen Sie mit Hilfe des Potenzreihenansatzes y(x) [mm] =\summe_{k=0}^{\infty} a^k*x^k [/mm] die Differentialgleichung
y'' −4xy' [mm] +(4x^2 [/mm] − 2) y = 0.
Geben Sie mindestens die ersten fünf Glieder der
Reihe an. Können Sie daraus eine explizite Darstellung der Lösung erraten? Welche
Bedeutung haben die ersten Koeffizienten [mm] a_0 [/mm] und [mm] a_1? [/mm]

Hallo,

potenreihenansatz habe ich schon, ich weiß jetzt  nur nicht ob ich für die Koeffizienten 4x und [mm] (4x^2 [/mm] - 2) auch eine reihe einsetzen muss, wenns eine gibt...
gibt es dafür überhaupt potenzreihen?
grüße

        
Bezug
Potenzreihenansatz: Antwort
Status: (Antwort) fertig Status 
Datum: 13:28 So 20.12.2009
Autor: rainerS

Hallo!

> Lösen Sie mit Hilfe des Potenzreihenansatzes [mm]y(x) =\summe_{k=0}^{\infty} a^k*x^k[/mm] die Differentialgleichung
> [mm] y'' - 4xy' +(4x^2 − 2) y = 0[/mm].
> Geben Sie mindestens die ersten fünf Glieder der
>  Reihe an. Können Sie daraus eine explizite Darstellung
> der Lösung erraten? Welche
>  Bedeutung haben die ersten Koeffizienten [mm]a_0[/mm] und [mm]a_1?[/mm]
>  Hallo,
>  
> potenreihenansatz habe ich schon, ich weiß jetzt  nur
> nicht ob ich für die Koeffizienten 4x und [mm](4x^2[/mm] - 2) auch
> eine reihe einsetzen muss, wenns eine gibt...

Nein, du musst diese Polynome in die Potenzreihen für $y'$ bzw y hineinmultiplizieren, damit du Koeffizientenvergleich machen kannst.

>  gibt es dafür überhaupt potenzreihen?

Polynome sind Potenzreihen mit endlich vielen Gliedern.

  Viele Grüße
    Rainer


Bezug
                
Bezug
Potenzreihenansatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:15 So 20.12.2009
Autor: pandabaer

Alles klar, super, danke!!
[mm] a_0 [/mm] und [mm] a_1 [/mm] müssen durch ein RWP gegeben sein, sonst kann die Lösung nicht durch die Taylorreihe dargestellt werden, da die ersten glieder nicht berechnet werden können( 5 gleichungen 6 unbekannte!)

Bezug
                        
Bezug
Potenzreihenansatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:22 So 20.12.2009
Autor: rainerS

Hallo!

> Alles klar, super, danke!!
>  [mm]a_0[/mm] und [mm]a_1[/mm] müssen durch ein RWP gegeben sein, sonst kann

Nicht Rand-, sondern Anfangsbedingungen. Und welche Bedeutung haben [mm] $a_0$ [/mm] und [mm] $a_1$ [/mm] ganz konkret?

> die Lösung nicht durch die Taylorreihe dargestellt werden,
> da die ersten glieder nicht berechnet werden können( 5
> gleichungen 6 unbekannte!)

Das versteh ich überhaupt nicht, wie du auf 5 Gleichungen kommst.

Poste mal, was du gerechnet hast!

Viele Grüße
   Rainer



Bezug
                                
Bezug
Potenzreihenansatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:33 So 20.12.2009
Autor: pandabaer

[mm] a_0 [/mm] und [mm] a_1 [/mm] werden benötigt um die restlichen koeffizienten für die taylorreihe zu berechnen...
die fünf gleichungen entstehen durch den koeffizientenevrgleich mit k=0,...,4
also so haben wirs bei der letzten aufgabe gemacht..
und da ich hier keine Anfangsbedingungen habe, kann ich keine der [mm] a_k [/mm] s berechnen...


Bezug
                                        
Bezug
Potenzreihenansatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:06 Mo 21.12.2009
Autor: rainerS

Hallo!

> [mm]a_0[/mm] und [mm]a_1[/mm] werden benötigt um die restlichen
> koeffizienten für die taylorreihe zu berechnen...
>  die fünf gleichungen entstehen durch den
> koeffizientenevrgleich mit k=0,...,4
>  also so haben wirs bei der letzten aufgabe gemacht..

Das ist aber keine allgemeine Lösung; du sollst eine Rekursionsformel für die Koeffizienten ableiten.

>  und da ich hier keine Anfangsbedingungen habe, kann ich
> keine der [mm]a_k[/mm] s berechnen...

Die Anfangsbedingungen sind doch [mm] $a_0$ [/mm] und [mm] $a_1$. [/mm]

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]