www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenPotenzreihendarstellung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Potenzreihendarstellung
Potenzreihendarstellung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihendarstellung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 10:48 Sa 24.05.2008
Autor: TommyTomsn

Aufgabe
Leiten Sie die geometrische Reihe [mm] \summe_{n=0}^{\infty} x^{n} [/mm] = [mm] \bruch{1}{1-x} [/mm] ab und geben Sie eine Potenzreihendarstellung der Funktion [mm] \bruch{1}{(2-x)^{2}} [/mm] an.

Die Ableitung der geometrischen Reihe ist laut meiner Berechnung:
[mm] \summe_{n=1}^{\infty} nx^{n-1} [/mm] = [mm] \bruch{1}{(1-x)^{2}} [/mm]

Ich komme jedoch nicht auf die Potenzreihendarstellung des zweiten Terms.
Hat jemand eine Idee/Lösung dazu?

        
Bezug
Potenzreihendarstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:59 Sa 24.05.2008
Autor: Al-Chwarizmi


> Leiten Sie die geometrische Reihe [mm]\summe_{n=0}^{\infty} x^{n}[/mm]
> = [mm]\bruch{1}{1-x}[/mm] ab und geben Sie eine
> Potenzreihendarstellung der Funktion [mm]\bruch{1}{(2-x)^{2}}[/mm]
> an.
>  Die Ableitung der geometrischen Reihe ist laut meiner
> Berechnung:
>  [mm]\summe_{n=1}^{\infty} nx^{n-1}[/mm] = [mm]\bruch{1}{(1-x)^{2}}[/mm]
>  
> Ich komme jedoch nicht auf die Potenzreihendarstellung des
> zweiten Terms.
>  Hat jemand eine Idee/Lösung dazu?

Hallo Tommy,

du hast ja jetzt schon eine Reihendarstellung für   [mm]\bruch{1}{(1-x)^{2}}[/mm]

Das einzige was stört, ist der Ausdruck  (1-x) , an dessen
Stelle  (2-x)  stehen sollte. Dies lässt sich bestimmt mit
einer einfachen Substitution lösen:

Schreib'  zum Beispiel anstelle  von  (2-x)  den Ausdruck
2*(1-u) , wobei natürlich u = x/2 sein muss !

LG    al-Chwarizmi




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]