www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPrädikatenlogikPrädikatenlogik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Prädikatenlogik" - Prädikatenlogik
Prädikatenlogik < Prädikatenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Prädikatenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Prädikatenlogik: Implikation oder "und"?
Status: (Frage) beantwortet Status 
Datum: 10:54 Mo 06.10.2014
Autor: LPark

Aufgabe
Betrachten Sie folgende Aussageformen (Pradikate):
p(x) : x isst gerne Schokolade.
q(x) : x ist Sportler.
Formalisieren Sie die folgenden Aussagen (Individuenmenge: alle Menschen):


Meine Aufgabenstellung war:

'Keine Sportler essen gerne Schokolade.'

Als Lösung habe ich:

[mm] \neg \forall [/mm] x: {q(x) [mm] \wedge [/mm] p(x)}

geht auch:

[mm] \neg \forall [/mm] x: [mm] {\neg q(x) \Rightarrow p(x)} [/mm] ?



        
Bezug
Prädikatenlogik: Antwort
Status: (Antwort) fertig Status 
Datum: 12:53 Mo 06.10.2014
Autor: GeMir

Warum nicht einfach [mm] $\forall [/mm] x: q(x) [mm] \rightarrow \neg [/mm] p(x)$?
Alternativ: [mm] $\not\exists [/mm] x: (q(x) [mm] \wedge [/mm] p(x))$ ("Es gibt kein Mensch, der sowohl ein Sportler ist, als auch gerne Schokolade isst.")

[mm] $\forall [/mm] x: [mm] \neg [/mm] q(x) [mm] \rightarrow [/mm] p(x)$ würde nicht gehen, weil wir nicht wissen, ob es keine Menschen gibt, die keine Sportler sind aber auch keine Schokolade mögen.

[mm] $\neg \forall [/mm] x$ ist äquivalent zu [mm] $\exists [/mm] x$.

Bezug
                
Bezug
Prädikatenlogik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:14 Mo 06.10.2014
Autor: tobit09

Hallo GeMir!


> [mm]\forall x: \neg q(x) \rightarrow p(x)[/mm] würde nicht gehen,

In der Tat. Das würde bedeuten: Alle nicht sporttreibenden Menschen essen gerne Schokolade. Dies ist eine völlig andere Aussage als die aus der Aufgabenstellung.

> weil wir nicht wissen, ob es keine Menschen gibt, die keine
> Sportler sind aber auch keine Schokolade mögen.

Hier kann ich nicht wirklich folgen.

Meinst du aus logischen Gründen wissen wir dies nicht oder tatsächlich wissen wir dies nicht? Tatsächlich gibt es bestimmt irgendwelche nicht sporttreibenden Menschen Menschen, die keine Schokolade mögen. Nur lässt sich dies nicht logisch begründen, sondern mit gesunder Lebenserfahrung.

Weiter verstehe ich nicht, inwiefern unsere "logische Nichtkenntnis" des Wahrheitswertes der oben von dir angegebenen Aussage begründet, dass es sich dabei nicht um eine Lösung der Aufgabenstellung handelt. Schließlich kennen wir aus rein logischer Sicht auch nicht den Wahrheitswert der Aussage aus der Aufgabenstellung.


> [mm]\neg \forall x[/mm] ist äquivalent zu [mm]\exists x[/mm].

Am Ende muss es [mm] $\exists x\colon\neg$ [/mm] statt [mm] $\exists [/mm] x$ heißen.


Viele Grüße
Tobias

Bezug
        
Bezug
Prädikatenlogik: Antwort
Status: (Antwort) fertig Status 
Datum: 16:37 Mo 06.10.2014
Autor: tobit09

Hallo LPark!


> Betrachten Sie folgende Aussageformen (Pradikate):
>  p(x) : x isst gerne Schokolade.
>  q(x) : x ist Sportler.
>  Formalisieren Sie die folgenden Aussagen (Individuenmenge:
> alle Menschen):
>  
> Meine Aufgabenstellung war:
>  
> 'Keine Sportler essen gerne Schokolade.'

Auch auf die Gefahr hin, Teile des von GeMir geschriebenen zu wiederholen:

Formulieren wir dies schrittweise äquivalent um:

     Es gibt keine Sportler, die gerne Schokolade essen.

     Es gibt keinen einzigen Sportler, der gerne Schokolade isst.

     Es gibt keinen Menschen, der Sportler ist und gerne Schokolade isst.

     Es gilt nicht, dass ein Mensch existiert, der Sportler ist und gerne Schokolade isst.

     Es gilt nicht, dass ein Mensch x mit folgender Eigenschaft existiert: x ist Sportler und x isst gerne Schokolade.

     [mm] $\neg\exists x\colon q(x)\wedge [/mm] p(x)$.


> Als Lösung habe ich:
>  
> [mm]\neg \forall[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

x: $\{$q(x) [mm]\wedge[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

p(x)$\}$
[notok] Das würde bedeuten:

      Nicht alle Menschen sind Sportler und mögen Schokolade.

Äquivalent ausgedrückt:

     Nicht alle Sportler mögen Schokolade.


> geht auch:
>  
> [mm]\neg \forall[/mm] x: [mm]\{\neg q(x) \Rightarrow p(x)\}[/mm] ?

[notok] Das würde bedeuten:

      Nicht alle Menschen x haben folgende Eigenschaft: Wenn x kein Sportler ist, so mag x Schokolade.

Man kann sich überlegen, dass dies äquivalent ist zu:

     Es gibt einen nicht sporttreibenden Menschen, der keine Schokolade mag.


Viele Grüße
Tobias


Bezug
                
Bezug
Prädikatenlogik: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 09:38 Di 07.10.2014
Autor: LPark

Hallo und danke für die umfangreiche Antwort. =)

Eine kleine Frage habe ich noch:
Wenn es heißt, dass es keinen gibt/keiner existiert, muss man immer
[mm] \neg \exists [/mm] schreiben?
Dementsprechend kann man bei [mm] \neg \forall [/mm] davon ausgehen, dass es noch Personen geben kann, auf die die Aussage zutrifft?

Danke. :)

Bezug
                        
Bezug
Prädikatenlogik: Antwort
Status: (Antwort) fertig Status 
Datum: 23:33 Di 07.10.2014
Autor: DieAcht

Hallo,


>  Wenn es heißt, dass es keinen gibt/keiner existiert, muss
> man immer
> [mm]\neg \exists[/mm] schreiben?

Ja.

>  Dementsprechend kann man bei [mm]\neg \forall[/mm] davon ausgehen,
> dass es noch Personen geben kann, auf die die Aussage
> zutrifft?

Richtig.


Gruß
DieAcht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Prädikatenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]