www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLogikPrädikatenlogik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Logik" - Prädikatenlogik
Prädikatenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Prädikatenlogik: Sätze angeben verständnis
Status: (Frage) beantwortet Status 
Datum: 20:13 Di 07.04.2015
Autor: AnnaK1990

Aufgabe
Sei L= L( [mm] \le [/mm] ; *, f) und R = [mm] (\IR_{\le0}; \le [/mm] ; *; f) eine L-struktur mit nichtnegativen reellen Zahlen als Individuen Bereich. Geben Sie L-Sätze [mm] \partial1,\partial2,\partial3,\partial4 [/mm] an, sodass gilt:
R |= [mm] \partial1 \gdw f^R [/mm] ist die konstante Funktion mit Wert 1


Huhu, verstehe hier, bei dem ersten Satz die Lösungen leider nicht ganz und nehme an das das ein Fehler ist :)

[mm] \partial1(x) \equiv \forall [/mm] x (f(x) * f(x) = f(x) [mm] \wedge \existsy [/mm] (y [mm] \le [/mm] x [mm] \wedge \neg [/mm] x=y))

ich verstehe nicht was das hier bedeutet f(x) * f(x) = f(x) müsste es nicht heissen [mm] \forall [/mm] y (f(y) * f(y) = x [mm] \wedge \existsy [/mm] (y [mm] \le [/mm] x [mm] \wedge \neg [/mm] x=y))
Dann wäre x eins  und f(y) würde für alle Werte auf 1 gehen?

Hoffe ihr versteht was ich meine :)

        
Bezug
Prädikatenlogik: Antwort
Status: (Antwort) fertig Status 
Datum: 17:41 Mi 08.04.2015
Autor: tobit09

Hallo AnnaK1990!


> Sei L= L( [mm]\le[/mm] ; *, f) und R = [mm](\IR_{\le0}; \le[/mm] ; *; f) eine
> L-struktur mit nichtnegativen reellen Zahlen als Individuen
> Bereich.

(Es soll sicherlich [mm] $\IR_{\ge0}$ [/mm] statt [mm] $\IR_{\le0}$ [/mm] heißen.)

> Geben Sie L-Sätze
> [mm]\partial1,\partial2,\partial3,\partial4[/mm] an, sodass gilt:
>  R |= [mm]\partial1 \gdw f^R[/mm] ist die konstante Funktion mit
> Wert 1


> Huhu, verstehe hier, bei dem ersten Satz die Lösungen
> leider nicht ganz und nehme an das das ein Fehler ist :)

Ich auch.


> [mm]\partial1(x) \equiv \forall[/mm] x (f(x) * f(x) = f(x) [mm]\wedge \existsy[/mm]
> (y [mm]\le[/mm] x [mm]\wedge \neg[/mm] x=y))

Die Formel auf der rechten Seite enthält, so wie du sie getippt hast, die freie Variable y und ist somit gar kein Satz.


> ich verstehe nicht was das hier bedeutet f(x) * f(x) = f(x)
> müsste es nicht heissen [mm]\forall[/mm] y (f(y) * f(y) = x [mm]\wedge \existsy[/mm]
> (y [mm]\le[/mm] x [mm]\wedge \neg[/mm] x=y))
>  Dann wäre x eins  und f(y) würde für alle Werte auf 1
> gehen?
>  
> Hoffe ihr versteht was ich meine :)

Leider nicht so wirklich.


Idee der Lösung war wohl die Folgende:

Für jedes [mm] $z\in\IR$ [/mm] gilt die Äquivalenz

       [mm] $z=1\iff [/mm] z*z=z$ und [mm] $z\not=0$ [/mm]

(denn $z*z=z$ ist gleichbedeutend mit $z=1$ oder $z=0$).

Für [mm] $z\in\IR_{\ge0}$ [/mm] gilt weiter die Äquivalenz

      [mm] $z\not=0\iff \exists y\in\IR_{\ge0}\colon y\le z\wedge y\not=z$. [/mm]

Insgesamt erhalten wir so für jedes [mm] $z\in\IR_{\ge0}$ [/mm]

      [mm] $z=1\iff z*z=z\wedge \exists y\in\IR_{\ge0}\colon y\le z\wedge y\not=z$. [/mm]

Mithilfe der Formel

       [mm] $\psi(z)\equiv z*z=z\wedge \exists y\; (y\le z\wedge y\not=z)$ [/mm]

haben wir also die Äquivalenz

       [mm] $z=1\iff R\models \psi(z)$. [/mm]

Es folgt die "Äquivalenzkette"

      [mm] $f^R$ [/mm] ist die konstante Funktion mit Wert 1
[mm] $\iff$ $f^R(x)=1$ [/mm] für alle [mm] $x\in\IR_{\ge0}$ [/mm]
[mm] $\iff$ $R\models \psi(f^R(x))$ [/mm] für alle [mm] $x\in\IR_{\ge0}$ [/mm]
[mm] $\iff$ $R\models \forall x\; \psi(f(x))$ [/mm]
[mm] $\iff$ $R\models \forall x\;(f(x)*f(x)=f(x)\wedge \exists y\; (y\le f(x)\wedge y\not=f(x)))$. [/mm]

Somit leistet der Satz

     [mm] $\delta_1\equiv\forall x\;(f(x)*f(x)=f(x)\wedge \exists y\; (y\le f(x)\wedge y\not=f(x)))$ [/mm]

das Gewünschte.


Einfacher erscheint mir folgende alternative Wahl von [mm] $\delta_1$: [/mm]

     [mm] $\delta_1\equiv \forall x\;(\forall y\; [/mm] f(x)*y=y)$.

Das Entscheidende bei dieser Wahl: Für jedes [mm] $z\in\IR_{\ge0}$ [/mm] gilt die Äquivalenz

     [mm] $z=1\iff \forall y\in\IR_{\ge0}\colon [/mm] z*y=y$.


Viele Grüße
Tobias

Bezug
                
Bezug
Prädikatenlogik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:49 Mi 08.04.2015
Autor: AnnaK1990

Huhu, vielen Dank für deine ausführliche Antwort, hat mir sehr geholfen!!! Leider darf man nicht z [mm] \not= [/mm] 0 schreiben, da die 0 nicht als konstante angegeben ist, trotzdem hat es geholfen ;)
Deine zweite Lösung ist 100mal genialer, da bin ich leider gar nicht drauf gekommen, vielen Dank!


EDIT: ach sehe gerade das du das z [mm] \not= [/mm] 0 dann gar nicht mehr benutzt hast... alles richtig! :)

$ [mm] z=1\iff z\cdot{}z=z\wedge \exists y\in\IR_{\ge0}\colon y\le x\wedge y\not=x [/mm] $. hier ist x wahrscheinlich z? also für alle z muss es ein kleineres Element geben ohne das z und y gleich sind, da bleibt dann nur die 1 übrig, die beide Sachen erfüllt, super

Bezug
                        
Bezug
Prädikatenlogik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:36 Mi 08.04.2015
Autor: tobit09


> Huhu, vielen Dank für deine ausführliche Antwort, hat mir
> sehr geholfen!!! Leider darf man nicht z [mm]\not=[/mm] 0 schreiben,
> da die 0 nicht als konstante angegeben ist, trotzdem hat es
> geholfen ;)

Man darf die 0 nicht innerhalb einer L-Formel verwenden. Aber wenn ich jenseits von Formeln über reelle Zahlen rede, darf ich natürlich auch von der reellen Zahl 0 reden... ;-)


> [mm]z=1\iff z\cdot{}z=z\wedge \exists y\in\IR_{\ge0}\colon y\le x\wedge y\not=x [/mm].
> hier ist x wahrscheinlich z?

Genau: danke für den Hinweis! Ich korrigiere den Tippfehler gleich.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]