www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLogikPrädikatenlogik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Logik" - Prädikatenlogik
Prädikatenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Prädikatenlogik: Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:26 So 08.10.2006
Autor: kresse

Aufgabe
Man bestimme alle m, n [mm] \in \IN, [/mm] für welche die Prädikate Q(m;n) in eine wahre Aussage übergehen.
Q(m;n): (m=n!) [mm] \to [/mm] (m ist durch 10 teilbar)

hallihallo,

häng bei diesem beispiel leider. die fakultät von n muss eine zahl sein, die ohne rest durch 10 teilbar sein muss, da sonst m nicht gleich n sein könnte. kann es nun sein, dass die lösung der aufgabe folgendes ist:
n >= 5 und m = n!?

vielen dank und liebe grüße

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Prädikatenlogik: Antwort
Status: (Antwort) fertig Status 
Datum: 10:20 Mo 09.10.2006
Autor: kretschmer

Hallo,

ich würde mal behaupten, dass dies schon die vom Aufgabensteller geforderte Lösung ist. Es gibt logischer Weise undendlich viele Paare (m, n), für die das Prädikat wahr ist. Da jede Zahl n! mit N>=5 10 als Teiler hat, wie Du richtig festgestellt hast. Also kannst Du nicht alle Auflisten, sondern musst eine Regel angeben. So hast Du es ja auch gemacht.

Gruß
Matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]