www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenPrimärzerlegung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Determinanten" - Primärzerlegung
Primärzerlegung < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Primärzerlegung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:58 Do 20.09.2012
Autor: sissile

Aufgabe
Die Primärzerlegung der Matrix A= [mm] \pmat{ 5 & 1 &1&0&0 \\ -4&1&-2&0&0 \\0&0&3&0&0\\0&0&6&6&1 \\0&0&-6&-1&4 } [/mm] ist zu bestimmen

$ [mm] p_A=\blue{-}(z-3)^3 \cdot{}(z-5)^2 [/mm] $ $
$ [mm] \delta(A) =\{3,5\} [/mm] $
$ [mm] \lambda_1 [/mm] $ = 3, alg VFH 3
$ [mm] \lambda_2 [/mm] $ = 5, alg VFH 2

$ [mm] E_5 [/mm] $ = ker(A- 5 $ [mm] I_n) [/mm] $ = $ [mm] <\vektor{0\\0\\0\\1\\-1}> [/mm] $
ker((A- 5 $ [mm] I_n)^2) [/mm] $ = $ [mm] <\vektor{0\\0\\0\\1\\-1},\vektor{0\\0\\0\\0\\1}> [/mm] $

$ [mm] E_3 [/mm] $ = $ [mm] ker(A-3I_n)= <\vektor{1\\-2\\0\\0\\0},\vektor{0\\1\\-1\\3\\-3}> [/mm] $
ker((A- 3 $ [mm] I_n)^2) [/mm] $ = $ [mm] <\vektor{1\\-2\\0\\0\\0},\vektor{0\\1\\-1\\3\\-3},\vektor{1\\0\\0\\0\\0}> [/mm] $

$ [mm] T_{EB} [/mm] $ = S = $ [mm] \pmat{0&0&1&0&1\\0&0&-2&1&0\\0&0&0&-1&0\\1&0&0&3&0\\-1&1&0&-3&0} [/mm] $
$ [mm] [A]_{BB} [/mm] $ = $ [mm] S^{-1} [/mm] $ A S $ [mm] =\pmat{5&&&&\\0&5&&&\\0&0&3&&\\0&0&0&3&\\0&0&0&0&3} [/mm] $

Leider verstehe ich noch immer nicht wie die obere Dreieckshälfte aussieht bei der Primärzerlegung. laut Satz sind es es Blöcke der Gestalt [mm] A_i [/mm] = [mm] \pmat{ \lambda_i & &\*\\ &\ddots&\\0&&\lambda_i } [/mm]
[mm] \* [/mm] beliebige elemente

Liebe Grüße

        
Bezug
Primärzerlegung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Sa 22.09.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                
Bezug
Primärzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:54 Mo 24.09.2012
Autor: sissile

Hat keiner einen Rat? Es muss sich doch wer mit der primärzerlegung auskennen=?

LiebeGrüße

Bezug
                        
Bezug
Primärzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:37 Mo 24.09.2012
Autor: wieschoo

Primärzerlegung (als Begriff) höre ich heute zum ersten Mal.

Schau mal unter:
http://www.mat.univie.ac.at/~stefan/files/LA/LA.Skriptum.p.167-184.pdf

Seite 172

gruß
wieschoo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]