www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperPrimfaktorzerlegung v. Polynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Primfaktorzerlegung v. Polynom
Primfaktorzerlegung v. Polynom < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Primfaktorzerlegung v. Polynom: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 16:19 So 02.11.2008
Autor: Studentin88

Aufgabe
Bestimmen Sie die eindeutige Primfaktorzerlegung von
[mm] a(x)=x^{5}+x^{4}+1 [/mm]
in dem Polynomring [mm] \IZ_{2}. [/mm]

Hallo.
Kann mir jemand sagen, wie ich da am besten vorgehe? Ich habe vieles ausprobiert (z.B. Polynomdivisionen durch einige Polynome), aber nix hat geklappt. Auch als ich rückwärts versucht habe durch Primfaktoren a(x) zu erstellen, hat es nicht recht geklappt, z.B. durch mehreres Anwenden von [mm] (x+1)(x+1)=x^{2}+1. [/mm]

Bitte um Ratschlag!
Lg


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Primfaktorzerlegung v. Polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:32 So 02.11.2008
Autor: Studentin88

sorry, dieses Thema sollte in den Bereich Hochschule-> Algebra.
Weiß nicht wie man es dorthin verschiebt.

Bezug
        
Bezug
Primfaktorzerlegung v. Polynom: Doppelpost
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:32 Di 04.11.2008
Autor: Loddar

.

Doppelpost


Bezug
        
Bezug
Primfaktorzerlegung v. Polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:21 Mi 05.11.2008
Autor: Fry

Hallo,

Sei [mm] f=X^{5}+X^{4}+1. [/mm]
da ja die Primfaktorzerlegung in [mm] \IZ_{2}[X] [/mm] suchst, ist es hilfreich die Primelemente von [mm] \IZ_{2}[X] [/mm] = Irreduzible Polynome in [mm] \IZ_{2}[X] [/mm] (da [mm] \IZ_{2}[X] [/mm] Hauptidealring) zu kennen. Z.B. sind ja die Polynome ersten Grades immer irreduzibel in K[X], K Körper.
Jedoch hat das Polynom keine Nullstelle in [mm] \IZ_{2}, [/mm] also kann auch kein Linearfaktor der Art (X-a) abgespalten werden, also [mm] f\not= [/mm] (X-a)*g, wobei a Nullstelle und grad g=4.
D.h. wenn man eine Zerlegung von f=g*h in irreduzible Elemente g,h hat, dann kann nur noch grad g=2 und grad h=3 sein (da ja der Fall grad g=1 und grad h =4 ausgeschlossen wurde)
Außerdem kann man sagen, dass ein Polynom 2. oder 3.Grades in K[X] irreduzibel ist gdw. das Polynom keine Nullstellen in K hat. Auf diese Weise findet man heraus, dass g=X²+X+1 das einzige irreduzible Polynom 2.Grades in [mm] \IZ_{2}[X] [/mm] ist. Wenn du nun Polynomdivision von f mit g machst, bekommst du: [mm] X^{5}+X^{4}+1 [/mm] = [mm] (X^2+X+1)(X^3-X+1) [/mm]
Jetzt musst du nur noch zeigen, dass [mm] X^3-X+1 [/mm] irreduzibel in [mm] \IZ_{2}[X] [/mm] ist....

VG
Christian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]