www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraPrimideal - Primelement
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Algebra" - Primideal - Primelement
Primideal - Primelement < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Primideal - Primelement: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:22 So 17.10.2010
Autor: cantor

Hallo zusammen,

nocheinmal würde ich mich über Eure Hilfe sehr freuen:

- Sei ein Primideal p in einem ZPE-Ring gegeben. Dann enthält p ein Primelement.

Für einen Hauptidealring ist das natürlich sofort klar (weil jedes Ideal von der Form (a) mit a prim ist), aber für einen ZPE? Direkt aus der Definition folgt es jedenfalls nicht....

Wie kann man das zeigen?

Vielen Dank Euch!!

cantor

        
Bezug
Primideal - Primelement: Antwort
Status: (Antwort) fertig Status 
Datum: 18:41 So 17.10.2010
Autor: felixf

Moin cantor!

> Hallo zusammen,
>  
> nocheinmal würde ich mich über Eure Hilfe sehr freuen:
>  
> - Sei ein Primideal p in einem ZPE-Ring gegeben. Dann
> enthält p ein Primelement.

Diese Aussage ist so falsch. Du brauchst, dass $p$ ein Element [mm] $\neq [/mm] 0$ enthaelt.

(In jedem ZPE-Ring ist $(0)$ ein Primideal, aber es enthaelt kein Primelement!)

> Für einen Hauptidealring ist das natürlich sofort klar
> (weil jedes Ideal von der Form (a) mit a prim ist),

Hier benutzt du die voellig falsche Richtung! In einem Hauptidealring muesstest du zeigen: ist $(a)$ ein Primideal, so ist $a$ ein Primelement. Nicht umgekehrt!

> aber
> für einen ZPE? Direkt aus der Definition folgt es
> jedenfalls nicht....

Nunja, so indirekt folgt es auch nicht aus den Definitionen.

Du weisst:

* Ist $P$ ein Primideal und $a [mm] \cdot [/mm] b [mm] \in [/mm] P$, so ist $a [mm] \in [/mm] P$ oder $b [mm] \in [/mm] P$.

* In einem ZPE kannst du jedes Element in ein Produkt von endlich vielen Primelementen zerlegen.

Die erste Aussage kannst du auch etwas allgemeiner zeigen: ist [mm] $a_1 \cdot a_2 \cdots a_n \in [/mm] P$, so gibt es ein $i [mm] \in \{ 1, \dots, n \}$ [/mm] mit [mm] $a_i \in [/mm] P$.

Damit und mit der zweiten Aussage folgt sofort die Behauptung.

LG Felix


Bezug
                
Bezug
Primideal - Primelement: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:12 So 17.10.2010
Autor: cantor

Hallo Felix,

danke für die schnelle Antwort!!

Dein Beweis zum ZPE Ring ist klar, danke.

Nicht klar ist mir die Aussage zum Hauptidealring. Ich formuliere nochmal, was ich gemeint hatte:

Sei $A$ ein Hauptidealring, $a$ ein Primdeal in $A$.
Dann gilt (nach einem Lemma zur Hauptidealring): $a = (p)$ für ein Primelement $p$
Somit enthält $a$ ein Primelement, nämlich $p$.

Anders gefragt: Es gilt doch folgendes:

Sei A Hauptidealring. Dann
$a$ Primdeal ungleich $0$ [mm] $\gdw [/mm] a = (p)$ mit $p$ Primelement

oder nicht?

Grüße,
cantor

Bezug
                        
Bezug
Primideal - Primelement: Antwort
Status: (Antwort) fertig Status 
Datum: 19:24 So 17.10.2010
Autor: felixf

Moin!

> Nicht klar ist mir die Aussage zum Hauptidealring. Ich
> formuliere nochmal, was ich gemeint hatte:
>  
> Sei [mm]A[/mm] ein Hauptidealring, [mm]a[/mm] ein Primdeal in [mm]A[/mm].
>  Dann gilt (nach einem Lemma zur Hauptidealring): [mm]a = (p)[/mm]
> für ein Primelement [mm]p[/mm]
>  Somit enthält [mm]a[/mm] ein Primelement, nämlich [mm]p[/mm].
>  
> Anders gefragt: Es gilt doch folgendes:
>  
> Sei A Hauptidealring. Dann
>  [mm]a[/mm] Primdeal ungleich [mm]0[/mm] [mm]\gdw a = (p)[/mm] mit [mm]p[/mm] Primelement
>  
> oder nicht?

Ja, das gilt.

Du hattest aber nur die eine Richtung erwaehnt, und zwar nicht die, die bei der Aufgabe weiterhilft.

LG Felix


Bezug
                                
Bezug
Primideal - Primelement: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:14 Mo 18.10.2010
Autor: cantor

alles klar, danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]