www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheoriePrimitivwurzel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Zahlentheorie" - Primitivwurzel
Primitivwurzel < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Primitivwurzel: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:30 So 15.12.2013
Autor: DrRiese

Aufgabe
Sei p eine ungerade Primzahl und w [mm] \in \IZ, [/mm] 1 < w < [mm] p^{l} [/mm] ungerade, eine Primitivwurzel modulo [mm] p^{l}, [/mm] l [mm] \in \IN. [/mm] Zeigen Sie, dass dann w auch eine Primitivwurzel modulo [mm] 2p^{l} [/mm] sein muss.

Hallo :-)
Komme bei dieser Aufgabe nicht wirklich über den Ansatz hinaus..

Wir wissen: w Primitivwurzel modulo [mm] p^{l}, [/mm] also [mm] w^{p^{l}-1} \equiv [/mm] 1 mod [mm] p^{l} [/mm]
[mm] p^{l}|w^{p^{l}-1}-1 [/mm]

z.Z.
[mm] 2p^{l}|w^{2p^{l}-1}-1 [/mm]

Man kann schreiben: [mm] w^{p^{l}-1}=(w^{p^{l}-1})^{p^{l}}=w^{2p^{l}-1}, [/mm] also

[mm] p^{l}|w^{2p^{l}-1}-1 [/mm]

Und nun muss ich irgendwie zeigen, dass gilt [mm] p^{l}+p^{l}|w^{2p^{l}-1}-1 \gdw w^{2p^{l}-1} \equiv [/mm] 1 mod [mm] 2p^{l} [/mm]

Hätte jemand ne Idee? :-)

        
Bezug
Primitivwurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:49 So 15.12.2013
Autor: Schadowmaster

Hey,

deine Definition einer Primitivwurzel ist leider noch etwas falsch, guck die bitte nochmal ganz genau nach.
Dann wirst du sehen, dass du zeigen musst:
[mm] $2p^l \mid w^{p^l-1}-1$ [/mm] und [mm] $p^l-1$ [/mm] ist die kleinste Zahl $k$ mit [mm] $2p^l \mid w^k-1$. [/mm]

Wenn du dabei nicht weiter kommst sag gern Bescheid.


lg

Schadow

Bezug
                
Bezug
Primitivwurzel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:13 Mo 16.12.2013
Autor: DrRiese

Tut mir leid, weiss da aber nicht so richtig weiter, wie man das jetzt allg zeigen könnte :-(

Bezug
                        
Bezug
Primitivwurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 00:06 Di 17.12.2013
Autor: Schadowmaster

Der erste Schritt besteht darin, die Definition nachzugucken:

Sei $n [mm] \in \IN$. [/mm] Ein $w [mm] \in \IZ$ [/mm] heißt primitive Einheitswurzel zu $n$, wenn gilt:
-
-
-

Guck mal genau nach, was hier gelten muss, wie ihr das definiert habt.
Wenn du das hast und die Definition verstanden hast, dann können wir uns an die Frage machen, wie genau das jetzt gezeigt werden kann.

Bezug
                                
Bezug
Primitivwurzel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:31 Di 17.12.2013
Autor: DrRiese

Ok :-)

Also wir haben es folgendermaßen gemacht:

Ein erzeugendes Element von [mm] \IF^{\*} [/mm] heißt primitives Element von [mm] \IF, [/mm] Primitivwurzel modulo p, falls [mm] \IF [/mm] = [mm] \IZ_{p}. [/mm]

Kann man bestimmt noch schöner machen:

Ein Element w [mm] \in \IZ_{p} [/mm] heißt Primitivwurzel, wenn gilt [mm] \IZ_{p}^{\*}=\{w^{m}|m \in \IZ\}, [/mm] für p prim.

Hierbei muss gelten: [mm] w^{ord \IZ_{p}^{\*}} [/mm] = 1 und [mm] w^{k} \not= [/mm] 1, [mm] \forall [/mm] k < ord [mm] \IZ_{p}^{\*}. [/mm]

Wir wissen: ord w = [mm] p^{l}-1 [/mm]
zu zeigen: [mm] w^{2p^{l}-1} [/mm] mod [mm] 2p^{l}-1 [/mm] = 1 und [mm] w^{k} [/mm] mod [mm] 2p^{l}-1 \not= [/mm] 1, [mm] \forall [/mm] k < [mm] 2p^{l}-1 [/mm]



LG :-)

Bezug
                                        
Bezug
Primitivwurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 10:57 Di 17.12.2013
Autor: Schadowmaster

Naja, fast.
Ein Problem noch:
Was sind die Ordnungen von [mm] $\IZ_{p^l}^{\*}$ [/mm] und [mm] $\IZ_{2p^l}^{\*}$. [/mm]
Als Tipp: Es sind nicht [mm] $p^l-1$ [/mm] oder [mm] $2p^l-1$. [/mm] :)

Sonst sieht die Definition bis zum "Wir wissen" gut aus.


lg

Schadow

Bezug
                                                
Bezug
Primitivwurzel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:24 Di 17.12.2013
Autor: DrRiese

Achsoo, bin ich mit der Ordnung falsch abgebogen :-)

Also die Gruppenordnung modulo [mm] p^{l} [/mm] ist von der Eulerschen Phi-Funktion [mm] \varphi(p^{l}) =|\{a \in p^{l}| 1 \le a \le p^{l} \wedge ggT(a,p^{l})=1\}| [/mm]  gegeben.

[mm] \varphi(p^{l})=\varphi(p)*...*\varphi(p) [/mm] = [mm] (p-1)^{l} [/mm]
Ordnung w = [mm] (p-1)^{l} [/mm] = Ordnung [mm] \IZ_{p^{l}}^{\*} [/mm]

Ordnung [mm] \IZ_{2p^{l}} [/mm] = [mm] \varphi(2p^{l})=\varphi(2)*\varphi(p^{l})=1*(p-1)^{l} [/mm]

Kann man dann nicht jetzt einfach sagen: Da gilt ord [mm] \IZ_{2p^{l}}^{\*}=ord \IZ_{p^{l}}^{\*}=ord [/mm] w [mm] \Rightarrow [/mm] w auch Primitivwurzel mod [mm] 2p^{l} [/mm]

LG

Bezug
                                                        
Bezug
Primitivwurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:56 Di 17.12.2013
Autor: Schadowmaster

Hmm, leider nochmal daneben:
[mm] $\phi(ab) [/mm] = [mm] \phi(a)\phi(b)$ [/mm] gilt nur wenn $a$ und $b$ teilerfremd sind.
In diesem Fall gilt [mm] $\phi(p^l) =p^l-p^{l-1} [/mm] = [mm] p^{l-1}(p-1)$. [/mm]

Und nur weil die Gruppen gleiche Ordnung haben muss das noch nicht gelten, $w$ kann ja modulo [mm] $p^l$ [/mm] was anderes sein als modulo [mm] $2p^l$. [/mm]
Hier ist also - mit der richtigen Gruppenordnung - noch ein wenig Arbeit zu leisten.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]