www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheoriePrimzahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Zahlentheorie" - Primzahlen
Primzahlen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Primzahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:57 So 25.10.2015
Autor: Fry

Aufgabe
<br>
Seien [mm] $a_1,...,a_n\in\mathbb [/mm] N$.
Zeigen Sie:
Ist p eine Primzahl mit [mm] $p|a_1*...*a_n$, [/mm] so existiert ein [mm] $i\in\{1,...,n\}$ [/mm] mit [mm] $p|a_i.$ [/mm]



<br>

Hallo :),
könnte jemand von euch meinen Beweis kontrollieren?
Also der obige Satz soll mit vollständiger Induktion gezeigt werden:

I.A. $n=1$: [mm] $p|a_1$ [/mm] ist klar
I.V. Die obige Behauptung gelte für ein festes [mm] $n\in\mathbb [/mm] N$.
I.S. [mm] n\to [/mm] n+1: Es sei p eine Primzahl mit [mm] $p|a_1*...*a_{n+1}$ [/mm]
Da Primzahlen Primelemente in [mm] $\mathbb [/mm] Z$ sind, folgt aus [mm] $p|a_1*...*a_{n+1}$, [/mm] dass
[mm] $p|a_{n+1}$ [/mm] oder [mm] $p|a_1*...*a_{n}$. [/mm]
Im zweiten Fall gilt die Induktionsvoraussetzung und die Behauptung ist gezeigt.

Viele Grüße
Fry

        
Bezug
Primzahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:18 So 25.10.2015
Autor: koepper

Hallo Fry,
an diesem recht simplen Beweis gibt es nichts zu beanstanden.
LG

Bezug
        
Bezug
Primzahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:41 So 25.10.2015
Autor: UniversellesObjekt

Hallo,

wenn du weißt, dass Primzahlen die Primelemente in [mm] $\IZ$ [/mm] sind, ist es ja trivial. Bist du sicher, dass du das benutzen darfst? Die Aufgabe macht eigentlich nur Sinn, wenn man die Primzahlen als irreduzible Elemente in [mm] $\IZ$ [/mm] kennengelernt hat.

Liebe Grüße,
UniversellesObjekt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]