www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraPrimzahlen Kongruenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Algebra" - Primzahlen Kongruenz
Primzahlen Kongruenz < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Primzahlen Kongruenz: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:30 Mi 12.07.2006
Autor: soccy

Aufgabe
n sei das Produkt k verschiedener Primzahlen [mm] p_i [/mm] > 2. Zeigen Sie, dass die Kongruenz [mm] x^2 \equiv 1 [/mm] [mm] mod [/mm] [mm] n [/mm] dann genau [mm] 2 ^k [/mm] Lösungen in  [mm] \IZ/n \IZ [/mm] hat.

Leider habe ich gar keine Idee, wie diese Aufgabe zu lösen ist und der Tutor meinte, ihm sei diese Aufgabe auch unklar.
Ich freue mich auch über Teillösungen, Lösungsideen, ... ! Vielen Dank!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



Jetzt habe ich eine Idee, stimmt diese:
n = p1 * p2 * ... * pk, also ist [mm] x^2 [/mm]  [mm] \equiv [/mm] 1 mod p1 * ... * pk, also ist [mm] x^2 [/mm]  [mm] \equiv [/mm] 1 mod p1 , [mm] x^2 [/mm]  [mm] \equiv [/mm] 1 mod p2, [mm] x^2 [/mm]  [mm] \equiv [/mm] 1 mod ... bis [mm] x^2 [/mm]  [mm] \equiv [/mm] 1 mod pk. Da x immer positiv und negativ sein kann (da Quadrat ist dies in jedem Fall gleich) gibt es also nicht nur k Lösungen sondern [mm] 2^k [/mm] ..... oder?

        
Bezug
Primzahlen Kongruenz: Antwort
Status: (Antwort) fertig Status 
Datum: 23:45 Mi 12.07.2006
Autor: felixf

Hallo!

> n sei das Produkt k verschiedener Primzahlen [mm]p_i[/mm] > 2.
> Zeigen Sie, dass die Kongruenz [mm]x^2 \equiv 1[/mm] [mm]mod [/mm] [mm]n[/mm] dann
> genau [mm]2 ^k[/mm] Lösungen in  [mm]\IZ/n \IZ[/mm] hat.

Hinweis: Verwende den Chinesischen Restsatz, um die Gleichung in $k$ voneinander unabhaengige Gleichungen zu zerlegen. Wieviele Loesungen hat jede dieser `kleinen Gleichungen'? Wie setzt sich eine Loesung der `grossen Gleichung' aus denen der `kleinen Gleichungen' zusammen?

LG Felix


Bezug
                
Bezug
Primzahlen Kongruenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:01 Do 13.07.2006
Autor: soccy

Vielen Dank, damit check ich's juhu! Supi :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]