www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheoriePrimzahlen der Form...
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Zahlentheorie" - Primzahlen der Form...
Primzahlen der Form... < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Primzahlen der Form...: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:19 Mi 11.03.2009
Autor: Roli772

Aufgabe
Beweise: Es gibt unendlich viele PZ der Form 6m + 5!

Hallo an alle!

Habe leider keine wirkliche Idee, wie ich das lösen könnte.

ang. a:= { [mm] p_{1},p_{2},p_{3}....p_{n} [/mm] } wären alle Primzahlen der Form 6m+5. (n [mm] \in \IN). [/mm]

vielleicht wäre eine Möglichkeit, ein N zu bilden mit
N = [mm] 6*p_{1}*p_{2}*p_{3}*...*p_{n} [/mm] + 5
und mit dieser weiter zu arbeiten. Aber da fehlt mir irgendwie der Weitblick.

Würde mich daher über eure Ideen und Vorschläge sehr freuen!
Danke für eure Zeit!
Mfg Sr

        
Bezug
Primzahlen der Form...: Antwort
Status: (Antwort) fertig Status 
Datum: 09:44 Mi 11.03.2009
Autor: reverend

Hallo Roli,

Deine Idee ist doch gut!

Außer den Primzahlen 2 und 3 haben ja alle Primzahlen die Form 6k+1 oder 6k-1, letzteres geschickter als 6k+5 - wegen der 5 selbst. Für die Aufgabe ist das nicht wesentlich, weil man ja einfach [mm] k\in\IN_0 [/mm] annehmen darf, aber im allgemeinen ist es geschickter, um nicht verschiedene Definitionsmengen für [mm] \a{}6k+1, k\in\IN [/mm] und [mm] 6\hat{k}, \hat{k}\in\IN_{\red{0}} [/mm] zu haben.

Zurück zur Aufgabe.

Wenn Du nun annimmst, dass es eine größte Primzahl der Form 6m+5, [mm] m\in\red{\IN} [/mm] gebe, dann ist es (zumindest theoretisch) möglich, alle Primzahlen dieser Form zu bestimmen. Du betrachtest nun die Zahl

[mm] N=6\cdot{}p_{1}\cdot{}p_{2}\cdot{}p_{3}\cdot{}...\cdot{}p_{n}+5 [/mm]

N ist nun nicht durch 2,3 oder 5 teilbar (durch die Wahl von m ist die 5 jetzt ausgeschlossen), aber auch durch kein [mm] p_i. [/mm]

Also ist entweder die Liste der [mm] p_i [/mm] nicht vollständig - dann müssten wir nacharbeiten und die Betrachtung wiederholen ;-) - oder N ist selbst prim (und [mm] >p_n [/mm] ) oder aber durch ein [mm] p_j=6s+5>p_n [/mm] teilbar. In jedem Fall: ein Widerspruch.

Dies wird aus einer Restklassenbetrachtung deutlich. N kann zwar beliebig viele Teiler der Form 6k+1 haben, muss aber mindestens einen Teiler der Form 6m+5 haben um [mm] \mod{6} [/mm] den Rest 5 zu haben. Dass eine beliebige ungerade Anzahl von Teilern die Form 6m+5 haben können, tut dabei nichts zur Sache: für die Argumentation genügt ja die Existenz eines solchen Teilers.

Grüße
reverend



Bezug
                
Bezug
Primzahlen der Form...: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:39 Mi 11.03.2009
Autor: Roli772

hey super!
Das hilft mir gut weiter. Danke!!

Mfg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]