www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesPrimzahlenzwillinge
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Sonstiges" - Primzahlenzwillinge
Primzahlenzwillinge < Sonstiges < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Primzahlenzwillinge: Beweis
Status: (Frage) beantwortet Status 
Datum: 22:15 Mi 19.12.2012
Autor: pc_doctor

Hallo,
mich interessiert eine Frage:

Es gibt unendlich viele Primzahlen , gibt es auch unendlich viele Primzahlenzwillinge , also [mm] p_2 [/mm] - [mm] p_1 [/mm] = 2

Alle Primzahlenzwillinge , außer (3 und 5 ) haben folgendes gemeinsam : Alle sind durch 6 teilbar.

Somit hat man entweer die Form 6n-1 , oder 6n+1

Ich habe mir die Primzahlen bis 100.000 angeguckt und stoße auf Grenzen , je größer die Zahlen werden , desto schwerer wird es.

Eigentlich müssen es unendlich viele Primzahlenzwillinge geben. Hat da jemand Ahnung , wie man da irgendwie vorgeht ?

        
Bezug
Primzahlenzwillinge: Antwort
Status: (Antwort) fertig Status 
Datum: 22:52 Mi 19.12.2012
Autor: leduart

Hallo
hättest du mal wiki bemüht, wüsstest du , dass es dafür oder das gegentiel keinen Beweis gibt. Näheres siehe dort.
Gruss leduart

Bezug
        
Bezug
Primzahlenzwillinge: Antwort
Status: (Antwort) fertig Status 
Datum: 23:33 Mi 19.12.2012
Autor: Marcel

Hallo,

neben Leduarts Antwort:

> Hallo,
>  mich interessiert eine Frage:
>  
> Es gibt unendlich viele Primzahlen , gibt es auch unendlich
> viele Primzahlenzwillinge , also [mm]p_2[/mm] - [mm]p_1[/mm] = 2
>  
> Alle Primzahlenzwillinge , außer (3 und 5 ) haben
> folgendes gemeinsam : Alle sind durch 6 teilbar.

ein Primzahlzwilling ist ein Paar: [mm] $(p_1,p_2)$ [/mm] mit Primzahlen o.E. [mm] $p_1=p_2-2\,.$ [/mm]
Was soll das heißen, dass ein solches Paar durch [mm] $6\,$ [/mm] teilbar ist? Weder
[mm] $p_1$ [/mm] noch [mm] $p_2$ [/mm] kann durch [mm] $6\,$ [/mm] teilbar sein, denn andernfalls hätten
wir doch ein Problem: Wäre [mm] $p_1$ [/mm] durch [mm] $6\,$ [/mm] teilbar, so wäre [mm] $p_1$ [/mm]
keine Primzahl mehr.
  

> Somit hat man entweer die Form 6n-1 , oder 6n+1

Vermutlich meinst Du also: Der Mittelwert der Primzahlen [mm] $p_1$ [/mm] und [mm] $p_2$ [/mm]
eines Primzahlzwillings [mm] $(p_1,p_2)$ [/mm] ist durch [mm] $6\,$ [/mm] teilbar.
  
Aber das ist auch nicht verwunderlich: [mm] $$(p_1+p_2)/2=(p_1+p_1-2)/2=p_1-1\,,$$ [/mm]
und [mm] $p_1-1\,$ [/mm] ist sicher durch [mm] $2\,$ [/mm] teilbar, weil jede Primzahl ungleich
[mm] $2\,$ [/mm] sicher gerade ist. Angenommen, es wäre [mm] $p_1-1\,$ [/mm] nicht durch 3
teilbar: [mm] $p_1-1=3k+r$ [/mm] mit [mm] $r=1\,$ [/mm] oder [mm] $r=2\,$ [/mm] und einem
[mm] $k\in \IN_0\,.$ [/mm]
Es gilt also
[mm] $$p_1=3k+(r+1)$$ [/mm]
und
[mm] $$p_2=3k+(r+3)=3*(k+1)+r$$ [/mm]
mit $k [mm] \in \IN_0$ $r=1\,$ [/mm] oder [mm] $r=2\,.$ [/mm]

1. Fall: Ist [mm] $r=2\,,$ [/mm] so folgt [mm] $p_1=3*(k+1)\,,$ [/mm] und damit $3 | [mm] p_1\,,$ [/mm] also
kann dann nur [mm] $p_1=3$ [/mm] und [mm] $p_2=5$ [/mm] sein.

2. Fall: Ist [mm] $r=1\,,$ [/mm] so folgt
[mm] $$p_1+p_2=3k+2+(3k+3+1)=6k+6$$ [/mm]
und damit
[mm] $$(p_1+p_2)/2=3(k+1)\,,$$ [/mm]
und damit ist [mm] $p_1-1=(p_1+p_2)/2$ [/mm] offensichtlich doch durch 3 teilbar.
Widerspruch.

> Ich habe mir die Primzahlen bis 100.000 angeguckt und
> stoße auf Grenzen , je größer die Zahlen werden , desto
> schwerer wird es.
>  
> Eigentlich müssen es unendlich viele Primzahlenzwillinge
> geben.

Warum MÜSSTE es die denn eigentlich geben?

> Hat da jemand Ahnung , wie man da irgendwie vorgeht
> ?

Warten wir mal auf die Zahlentheoretiker oder Algebraiker, die sind da
sicher besser informiert, was den aktuellen Stand der Forschung betrifft.

Gruß,
  Marcel

Bezug
                
Bezug
Primzahlenzwillinge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:39 Do 20.12.2012
Autor: pc_doctor

Vielen Dank für die Antworten.

Das Problem, das ich hier angesprochen habe , ist noch ein ungelöstes Problem in der Mathematik. Schien am Anfang einfach zu sein, doch man stößt auf gewaltige Probleme , naja, haut wohl nicht hin , ist zu hoch für mich :D

Vielen Dank trotzdem.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]