www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionProblem bei Induktionschritt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Induktion" - Problem bei Induktionschritt
Problem bei Induktionschritt < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Problem bei Induktionschritt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:43 Do 10.05.2007
Autor: Zigainer

Aufgabe
Zu zeigen ist mit vollständiger Induktion, das folgendes gilt:
[mm] (f(x)*g(x))^{(n)}=\summe_{k=0}^{n}\vektor{n \\ k}f^{(k)}(x)g^{(n-k)}(x) [/mm]

Hi,

der Induktionsanfang ist noch kein Problem.
Jedoch tue ich mir beim Induktionschritt schwer, habs jetzt fast 2 Stunden lang probiert, komm aber auf keinen grünen Zweig.
Wäre echt super wenn mir jemand helfen könnte.
Danke schonmal im Voraus

MfG

ch habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Problem bei Induktionschritt: Ansatz
Status: (Antwort) fertig Status 
Datum: 18:04 Do 10.05.2007
Autor: barsch

Hi,

oh, jetzt wird's schwer, weil ich soviel mit dem Formeledito arbeiten muss :-)

Meines Wissen nach, handelt es sich hierbei um die Leibnizregel.

Induktionsanfang bekommst du hin.

Induktionsschritt: n [mm] \to [/mm] n+1

[mm] (f\*g)^{n+1}=((f\*g)')^{n}=(f'g+fg')^{n}=(f'g)^{n}+(fg')^{n} [/mm]

So, jetzt musst du mit der Induktionsvoraussetzung arbeiten:

[mm] =\summe_{k=0}^{n}\vektor{n \\ k}f^{k+1}g^{n-k}+\summe_{k=0}^{n}\vektor{n \\ k}f^{k}g^{n-k+1} [/mm]

Jetzt musst du das geschickt umformen, sodass du auf die gewünschte Form kommst. Ich muss zu meiner Schade gestehen, dass ich im Moment nicht drauf komme, wie ich das am Besten umforme, aber ich dachte mir, vielleicht hilft es dir ja weiter.

Du weißt ja jetzt auch, dass es sich um die Leibnizregel handelt, und kannst dann auch mal im Internet recherchieren. Oder erst einmal meinen Ansatz versuchen, weiter zu denken. Bis hierhin ist er richtig. Und du kommst mit der richtigen Umformung auch auf das gewünschte Ergebnis.

MfG

barsch


Bezug
                
Bezug
Problem bei Induktionschritt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:52 Do 10.05.2007
Autor: felixf

Hi barsch,

> oh, jetzt wird's schwer, weil ich soviel mit dem
> Formeledito arbeiten muss :-)

:-)

> Meines Wissen nach, handelt es sich hierbei um die
> Leibnizregel.

Ja, wobei der Name manchmal auch fuer den Spezialfall $n = 1$ verwendet wird.

> Induktionsanfang bekommst du hin.
>  
> Induktionsschritt: n [mm]\to[/mm] n+1
>  
> [mm](f\*g)^{n+1}=((f\*g)')^{n}=(f'g+fg')^{n}=(f'g)^{n}+(fg')^{n}[/mm]
>  
> So, jetzt musst du mit der Induktionsvoraussetzung
> arbeiten:
>  
> [mm]=\summe_{k=0}^{n}\vektor{n \\ k}f^{k+1}g^{n-k}+\summe_{k=0}^{n}\vektor{n \\ k}f^{k}g^{n-k+1}[/mm]
>  
> Jetzt musst du das geschickt umformen, sodass du auf die
> gewünschte Form kommst. Ich muss zu meiner Schade gestehen,
> dass ich im Moment nicht drauf komme, wie ich das am Besten
> umforme, aber ich dachte mir, vielleicht hilft es dir ja
> weiter.

Ganz normal, genau so wie man den binomischen Lehrsatz beweist: man macht ne Indexverschiebung, betrachtet die Faelle [mm] $f^{(n+1)}$ [/mm] und [mm] $g^{(n+1)}$ [/mm] separat und kann damit die verbleibenden beiden Summen zu einer zusammenfuegen. Und dann verwendet man die Additionsregel fuer Binomialkoeffizienten.

LG Felix


Bezug
                        
Bezug
Problem bei Induktionschritt: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 22:41 Do 10.05.2007
Autor: Zigainer

Hi,

danke schonmal, habs gard wieder versucht.
Ich kriegs gard leider nur nicht gebacken......

Mfg

Bezug
                                
Bezug
Problem bei Induktionschritt: Antwort
Status: (Antwort) fertig Status 
Datum: 00:28 Fr 11.05.2007
Autor: leduart

Hallo
Dann schreib du doch mal auf, wie weit du mit den Vorschlägen gekommen bist, damit man sehen kann wos hakt.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]