www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungProdukt - und Quotientenregel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differenzialrechnung" - Produkt - und Quotientenregel
Produkt - und Quotientenregel < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Produkt - und Quotientenregel: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 10:10 Mi 16.11.2011
Autor: MirjamKS

Aufgabe
Leiten sie ab: i(x)= 1/x * [mm] e^x [/mm]

An sich muss man da ja die Produktregel anwenden.
Nur wie mache ich das mit dem Bruch? Die Quotientenregel für den Bruch anwenden?

u= 1/x    u'=?
[mm] v=e^x v'=e^x [/mm]

Dann wäre ja bei der Quotientenregel nur bei 1/x
u= 1     u'= nichts
v=x      v'= 1

Also x-1*1/ [mm] x^2 [/mm]
daraus folgt: [mm] x-1/x^2 [/mm] oder?

Ist das so richtig, oder habe ich einen Denkfehler?

Gruß Miri



Diese Frage habe ich in keinem anderen Forum oder auf einer anderen Internetseite gestellt.

        
Bezug
Produkt - und Quotientenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 10:18 Mi 16.11.2011
Autor: Stoecki

hallo,

i(x) = [mm] \bruch{1}{x} [/mm] * [mm] e^{x} [/mm]

wie du richtig gesagt hast setzte
u(x):= [mm] \bruch{1}{x} [/mm]

v(x) := [mm] e^{x} [/mm]

mit der quotientenregel (die ich inzwischen vergessen habe wie sie lautet) bekommst du:

u'(x) = - [mm] \bruch{1}{x^{2}} [/mm]

zudem ist v'(x) = v(x) = [mm] e^{x} [/mm]

jetzt hast du alle bausteine für die produktregel.


kleiner tipp. wenn du dir wie ich die quotientenregel nicht merken kannst, kannst du immer auch die produktregel verwenden:
f(x):= [mm] \bruch{u(x)}{v(x)} [/mm] = u(x) * [mm] \bruch{1}{v(x)} [/mm] = v(x) * [mm] (u(x))^{-1} [/mm]

es kommt das gleiche raus ;-)

gruß bernhard


Bezug
                
Bezug
Produkt - und Quotientenregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:23 Mi 16.11.2011
Autor: MirjamKS

Danke erstmal für die Antwort :)
aber ich verstehe nicht ganz wie man auf u'(x)= 1 / [mm] x^2 [/mm]
kommt. weil bei mir kam ja raus: x - 1 / [mm] x^2 [/mm]
Wohin wandert denn das x aus dem Zähler?

Gruß Miri

Bezug
                        
Bezug
Produkt - und Quotientenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 10:29 Mi 16.11.2011
Autor: Stoecki

da hast du dich einfach nur verrechnet. hab noch mal die regel gegoogled:

u'(x) = [mm] \bruch{(1)' * x - 1 * (x)'}{x^{2}} [/mm] = [mm] \bruch{0 * x - 1 * 1}{x^{2}} [/mm] = [mm] \bruch{-1}{x^{2}} [/mm]

wie gesagt. man kann sowas auch anders ableiten: [mm] \bruch{1}{x} [/mm] = [mm] x^{-1} [/mm]

das ist ein polynom. also gilt [mm] (x^{k})' [/mm] = [mm] k*x^{k-1}. [/mm] also: [mm] (x^{-1})' [/mm] = [mm] (-1)*x^{-2} [/mm] = - [mm] \bruch{1}{x^{2}} [/mm]

Bezug
                                
Bezug
Produkt - und Quotientenregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:35 Mi 16.11.2011
Autor: MirjamKS

Achsoo, ich dachte bei der Ableitung von 1 kommt nichts hin, aber da muss ja 0 hin.. hab da wohl in der Schule kurz nicht aufgepasst *rotwerd*
Tschuldige, wollte dir die Quotientenregel noch nachträglich schreiben, ging aber nicht mehr. :/

Aber viielen Dank :)
Gruß Miri

Bezug
                                        
Bezug
Produkt - und Quotientenregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:40 Mi 16.11.2011
Autor: Stoecki

kein problem

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]