www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieProdukt stoch.konv. Zufallsvar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitstheorie" - Produkt stoch.konv. Zufallsvar
Produkt stoch.konv. Zufallsvar < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Produkt stoch.konv. Zufallsvar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:24 Fr 15.01.2010
Autor: Chrysanthemum

Aufgabe
Seien [mm] X_n, X_{}, Y_n,Y_{} :\Omega->\IR [/mm] Zufallsvariable mit [mm] X_n [/mm] -> [mm] X_{}, Y_n [/mm] -> [mm] Y_{} [/mm] stochastisch konvergierend. Zu zeigen ist, dass dann [mm] X_n*Y_n [/mm] stochastisch gegen [mm] X*Y_{} [/mm] konvergiert.

Hallo liebe Leute!
[mm] \fedon [/mm]
Es gilt doch also, dass  [mm] P(\{\omega:|X_n(\omega)-X(\omega)|>\varepsilon\})\to [/mm] 0 für alle [mm] \varepsilon [/mm] >0. Bzw. [mm] \forall \delta [/mm] >0 [mm] \exists [/mm] N [mm] \in \IN \forall [/mm] n>N: [mm] P(\{\omega:|X_n(\omega)-X(\omega)|>\varepsilon\})<\delta [/mm]
Ebenso mit [mm] Y_{}. [/mm] Zeigen muss man dann doch so etwas:  [mm] \forall \gamma [/mm] >0 [mm] \exists [/mm] N [mm] \in \IN \forall [/mm] n>N: [mm] P(\{\omega:|X_n(\omega)Y_n(\omega)-X(\omega)Y(\omega)|>\varepsilon\})<\gamma [/mm]
[mm] \fedoff [/mm]
Ich weiß leider nicht, wie ich hier weiterkomme.

Viele Grüße,
Chrysanthemum

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Produkt stoch.konv. Zufallsvar: Antwort
Status: (Antwort) fertig Status 
Datum: 15:17 Sa 16.01.2010
Autor: vivo

Hallo,

schau mal [http://www.mathematik.uni-ulm.de/stochastik/lehre/ws03_04/wr/skript/node62.html] hier [/url] unter theorem 5.10

gruß

Bezug
                
Bezug
Produkt stoch.konv. Zufallsvar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:37 Sa 16.01.2010
Autor: Chrysanthemum

Super, vielen Dank! Hat mir sehr weitergeholfen!

Gruß,

Chrysanthemum

Bezug
                        
Bezug
Produkt stoch.konv. Zufallsvar: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:58 Sa 16.01.2010
Autor: Chrysanthemum

Gibt es möglicherweise einen direkten Weg ohne letztlich das Borel Cantelli-Lemma zu benutzen?

Bezug
                                
Bezug
Produkt stoch.konv. Zufallsvar: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Mo 18.01.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]